Cover Image

Coupling photocatalysis and piezocatalysis in PVDF/ZnO nanofiber composites for efficient dye degradation

Daud A. Selimov, Dinara Sobola, Abdulatip Shuaibov, Richard Schubert, Rashid Gulakhmedov, Alina Rabadanova, Asiyat Magomedova, Farid Orudzhev

Abstract


The development of advanced catalytic materials for environmental applications remains a critical challenge due to the limitations of conventional photocatalysis, such as low charge separation efficiency and dependence on external light sources. In this study, we present the synthesis and investigation of electrospun polyvinylidene fluoride (PVDF) nanofibers modified with zinc oxide (ZnO) nanoparticles for enhanced photocatalytic, piezocatalytic, and piezophotocatalytic activity. The morphology and structural properties of the composite material were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show that the incorporation of ZnO reduces the average fiber diameter by 3.3 times and decreases the β-phase fraction from 87.3% to 71.6% due to nanoparticle agglomeration. The catalytic performance of PVDF/ZnO was evaluated in the degradation of methylene blue (MB) under different conditions: photocatalysis (71%), piezocatalysis (76%), and piezophotocatalysis (91%) within 60 minutes. Additionally, the membrane generated an average open-circuit voltage of 140 mV under mechanical stirring, demonstrating its ability to convert mechanical energy into electrical energy. These findings highlight the potential of PVDF/ZnO nanocomposites as multifunctional materials for sustainable catalytic applications and energy harvesting.

Keywords


PVDF; ZnO; photocatalysis;piezocatalysis; piezophotocatalysis;electrospinning

Full Text:

PDF

References


Jiang B, Xue X, Mu Z, Zhang H, Li F, Liu K, Wang W, Zhang Y, Li W, Yang C, Zhang K. Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition. Molecules.2022;27:8579. doi:10.3390/MOLECULES27238579

Zhang Y, Zhang X, Zhang Y, Zhang Y, Li H, Huang H. Enhanced piezo-photocatalytic activity of ZnS/Fe2O3: Benefit from type I junction and weak water flow-induced piezoelectric polarization. J Photochem Photobiol A Chem. 2025;460:116117. doi:10.1016/J.JPHOTOCHEM.2024.116117

Xu Z, Wang J, Cai H, Li T, Chen F, Tu S, Huang H, Xu X Efficient photocatalytic and piezocatalytic performance in oxygen-vacant CdBiO2Br with localized internal electric field. Separation Purificat Technol. 2025;361:131460. doi:10.1016/J.SEPPUR.2025.131460

Chandrasekar J, Venkatesan M, Hsu YC, Syu ZS, Chen WW, Hsu YF, Chung MA, Chen QG, Lee WY, Lin JH, Zhou Y, Kuo CC. In-situ oxidized MXene dopes for enhanced sensitivity of PVDF piezoelectric nanogenerators in Morse code transmission and photocatalysis applications. Mater Today Energy. 2025;48:101760. doi:10.1016/J.MTENER.2024.101760

Liu Y, Chen T, Zheng J, Zhu Z, Huang Z, Hu C, Liu B. Enhanced piezo-catalytic performance of BaTiO3 nanorods combining highly exposed active crystalline facets and superior deformation capability: Water purification and activation mechanism. Chem Eng J. 2024;488:150768. doi:10.1016/J.CEJ.2024.150768

Li L, Lu S, Cao W, Zhu Q, Li R, Wei Y, Yang S, Wang C. Band Gap Engineering and Lattice Distortion for Synergetic Tuning Optical Properties of NaNbO3 toward Enhanced Piezo-photocatalytic Activity. Inorg Chem. 2024;63:11745–11756. doi:10.1021/acs.inorgchem.4c01306

Rabadanova AA, Selimov DA, Shuaibov AO, Alikhanov NM-R, Suleymanov SI, Shishov AY, Salnikov VD, Sangamesha MA, Giraev KM, Bamatov IM, Orudzhev FF. Smart multi-stimuli responsive magneto-piezoelectric composite material based on PVDF and BiFeO3 nanoparticles for catalysis and energy harvesting. Polymer 2025;324:128241. doi:10.1016/J.POLYMER.2025.128241

Li J, Li J, Yuan H, Sun X. Fabrication and catalytic activities of ZnSnO3/C nanofibers in the piezo/photocatalysis of diclofenac. Ceram Int. 2024;50:33581–33589. doi:10.1016/J.CERAMINT.2024.06.174

Zou X, Lu M, Yang H, Wu X. Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation. Mater Today Sustainabil. 2024;28:101000. doi:10.1016/J.MTSUST.2024.101000

Zhang M, Nie S, Cheng T, Feng Y, Zhang C, Zheng L, Wu L, Hao W, Ding Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy. 2021;90:106635. doi:10.1016/J.NANOEN.2021.106635

Li M, Liu L, Li Y, Li Y. Tuning piezoelectric driven photocatalysis by TiO2/ZnS heterojunction for mineral processing wastewater degradation. J Water Process Eng. 2024;64:105727. doi:10.1016/J.JWPE.2024.105727

Bettini S, Pagano R, Valli D, Ingrosso C, Roeffaers M, Hofkens J, Giancane G, Valli L. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surfaces Interfaces. 2023;36:102581. doi:10.1016/J.SURFIN.2022.102581

Borysiewicz MA. ZnO as a functional material, a review. Crystals. 2019;9:505. doi:10.3390/CRYST9100505

Consonni V, Lord AM. Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices. Nano Energy. 2021;83:105789. doi:10.1016/J.NANOEN.2021.105789

15. 15. Xu X, Jia Y, Xiao L, Wu Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere. 2018;193:1143–1148. doi:10.1016/J.CHEMOSPHERE.2017.11.116

Nie Q, Xie Y, Ma J, Wang J, Zhang G. High piezo–catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J Cleaner Production. 2020;242:118532. doi:10.1016/J.JCLEPRO.2019.118532

Truong Hoang Q, Ravichandran V, Nguyen Cao TG, Kang JH, Ko YT, Lee T Il, Shim MS. Piezoelectric Au-decorated ZnO nanorods: Ultrasound-triggered generation of ROS for piezocatalytic cancer therapy. Chem Eng J. 42022;35:135039. doi:10.1016/J.CEJ.2022.135039

Zhang Q, Jia Y, Chen J, Wang X, Zhang L, Chen Z, Wu Z. Strongly enhanced piezocatalysis of BiFeO3/ZnO heterostructure nanomaterials. New J Chem. 2023;47:3471–3480. doi:10.1039/D2NJ05732H

Ma W, Lv M, Cao F, Fang Z, Feng Y, Zhang G, Yang Y, Liu H. Synthesis and characterization of ZnO-GO composites with their piezoelectric catalytic and antibacterial properties. J Environ Chem Eng. 2022;10:107840. doi:10.1016/J.JECE.2022.107840

Magomedova AG, Rabadanova AA, Shuaibov AO, Selimov DA, Sobola DS, Rabadanov KS, Giraev KM, Orudzhev FF. Combination NIPS/TIPS Synthesis of α-Fe2O3 and α/γ-Fe2O3 Doped PVDF Composite for Efficient Piezocatalytic Degradation of Rhodamine B. Molecules. 2023;28:6932. doi:10.3390/MOLECULES28196932/S1

Ding J, Han Z, Yang X, Liu J, Guo K, Fan H, Hu P, Teng F. Multifunctional ZnO/PVDF hybrid fiber membrane: Enhanced photocatalytic degradation performance and oil/water separation application. Mater Sci Semiconductor Processing. 2025;185:108942. doi:10.1016/J.MSSP.2024.108942

Li Q, Lin R, Tang Z, Liang S, Xue X, Xing L (2024) A flexible self-cleaning/antibacterial PVDF/T-ZnO fabric based on piezo-photocatalytic coupling effect for smart mask. J Phys D Appl Phys. 2024;57:305106. doi:10.1088/1361-6463/AD4368

Postica V, Vahl A, Santos-Carballal D, Dankwort T, Kienle L, Hoppe M, Cadi-Essadek A, De Leeuw NH, Terasa MI, Adelung R, Faupel F, Lupan O Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization. ACS Appl Mater Interfaces. 2019;11:31452–31466. doi:10.1021/acsami.9b07275

Xu D, Fan D, Shen W. Catalyst-free direct vapor-phase growth of Zn1-xCuxO micro-cross structures and their optical properties. Nanoscale Res Lett. 2013;8:1–9. doi:10.1186/1556-276X-8-46

Jin Y, Cui Q, Wen G, Wang Q, Hao J, Wang S, Zhang J. XPS and Raman scattering studies of room temperature ferromagnetic ZnO : Cu. J Phys D Appl Phys. 2009;42:215007. doi:10.1088/0022-3727/42/21/215007

Ma W, Xu L, Tian Z, Zang A; Changes in photocatalytic activity and optical properties of ZnO whiskers induced by UV irradiation. J Luminescence. 2022;249:119015. doi:10.1016/J.JLUMIN.2022.119015

Pandey P, Parra MR, Haque FZ, Kurchania R. Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode based dye sensitized solar cells. J Mater Sci Mater Electronics. 2017;28:1537–1545. doi:10.1007/S10854-016-5693-9

Filippov S, Wang XJ, Devika M, Koteeswara Reddy N, Tu CW, Chen WM, Buyanova IA. Effects of Ni-coating on ZnO nanowires: A Raman scattering study. J Appl Phys. 2013;113: doi:10.1063/1.4807912/371284

Yang AL, Wei HY, Liu XL, Song HP, Fan HB, Zhang PF, Zheng GL, Yang SY, Zhu QS, Wang ZG. Characterization of ZnMgO hexagonal-nanotowers/films on m-plane sapphire synthesized by metal organic chemical vapour deposition. Journal of Phys D Appl Phys. 2008;41:205416. doi:10.1088/0022-3727/41/20/205416

Nizar BM, Lajnef M, Chaste J, Chtourou R, Herth E. Highly C-oriented (002) plane ZnO nanowires synthesis. RSC advances 2023;13:15077–15085. doi:10.1039/D3RA01511D

Chassaing PM, Demangeot F, Paillard V, Zwick A, Combe N, Pag̀s C, Kahn ML, Maisonnat A, Chaudret B. Raman study of E2 and surface phonon in zinc oxide nanoparticles surrounded by organic molecules. Appl Phys Lett. 2007;91: doi:10.1063/1.2757591/167774

Sliem MA, Hikov T, Li ZA, Spasova M, Farle M, Schmidt DA, Havenith-Newen M, Fischer RA. Interfacial Cu/ZnO contact by selective photodeposition of copper onto the surface of small ZnO nanoparticles in non-aqueous colloidal solution. Phys Chem Chem Phys. 2010;12:9858–9866. doi:10.1039/C003861J

Orudzhev F, Selimov D, Rabadanova A, Shuaibov A, Abdurakhamanov M, Gulakhmedov R, Papež N, Ramazanov S, Zvereva I, Částková K (2023) 1D/2D Electrospun Polyvinylidene Fluoride Nanofibers/Carbon Flakes Hybrid Nonmetal Polymeric Photo- and Piezocatalyst. ChemistrySelect. 2023;8:e202303318. doi:10.1002/SLCT.202303318

Purushothaman SM, Tronco MF, Ponçot M, Chitralekha CS, Guigo N, Malfois M, Kalarikkal N, Thomas S, Royaud I, Rouxel D. Quantifying the Crystalline Polymorphism in PVDF: Comparative Criteria Using DSC, WAXS, FT-IR, and Raman Spectroscopy. ACS Appl Polymer Mater. 2024;6:8291–8305. doi:10.1021/acsapm.4c01157

Khan F, Kowalchik T, Roundy S, Warren R. Stretching-induced phase transitions in barium titanate-poly(vinylidene fluoride) flexible composite piezoelectric films. Scripta Materialia. 2021;193:64–70. doi:10.1016/j.scriptamat.2020.10.036

Selimov DA, Rabadanova AA, Shuaibov AO, Magomedova AG, Abdurakhmanov MG, Gulakhmedov RR, Ramazanov SM, Amirov AA, Sobola DS, Orudzhev FF. Piezo-Enhanced Photocatalytic Activity of BaTiO3-Doped Polyvinylidene Fluoride Nanofibers. Kinetics Catalysis. 2024;65:682–694. doi:10.1134/S0023158424602407

Bridelli MG, Bridelli MG (2017) Fourier Transform Infrared Spectroscopy in the Study of Hydrated Biological Macromolecules. Fourier Transforms - High-tech Application and Current Trends. doi:10.5772/66576

Orudzhev FF, Sobola DS, Ramazanov SM, Častková K, Selimov DA, Rabadanova AA, Shuaibov AO, Gulakhmedov RR, Abdurakhmanov MG, Giraev KM. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers. 2023;15:3252. doi:10.3390/POLYM15153252

Gregorio R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polymer Sci. 2006;100:3272–3279. doi:10.1002/APP.23137

Rabadanova A, Abdurakhmanov M, Gulakhmedov R, Shuaibov A, Selimov D, Sobola D, Částková K, Ramazanov S, Orudzhev F. Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. Chimica Techno Acta. 2022;9:20229420. doi:10.15826/chimtech.2022.9.4.20

Simanjuntak FM, Ohno T, Samukawa S. Neutral Oxygen Beam Treated ZnO-Based Resistive Switching Memory Device. ACS Appl Electronic Mater. 2019;1:18–24. doi:10.1021/acsaelm.8b00055

Kim W, Choi M, Yong K. Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sensors Actuators B Chem. 2015;209:989–996. doi:10.1016/J.SNB.2014.12.072

Singh P, Simanjuntak FM, Wu YC, Kumar A, Zan HW, Tseng TY. Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. J Mater Sci. 2020;55:8850–8860. doi:10.1007/s10853-020-04659-7

Orudzhev F, Muslimov A, Selimov D, Gulakhmedov RR, Lavrikov A, Kanevsky V, Gasimov R, Krasnova V, Sobola D. Oxygen Vacancies and Surface Wettability: Key Factors in Activating and Enhancing the Solar Photocatalytic Activity of ZnO Tetrapods. Int J Molecular Sci. 2023;24:16338. doi:10.3390/IJMS242216338

Wei Y, Zhang Y, Geng W, Su H, Long M. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Applied Catalysis B: Environmen. 2019;259:118084. doi:10.1016/J.APCATB.2019.118084

Wu J, Xu Q, Lin E, Yuan B, Qin N, Thatikonda SK, Bao D. Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO3. ACS Appl Mater Interfaces 2018;10:17842–17849. doi:10.1021/acsami.8b01991

Li S, Zhao Z, Yu D, Zhao JZ, Su Y, Liu Y, Lin Y, Liu W, Xu H, Zhang Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy. 2019;66:104083. doi:10.1016/J.NANOEN.2019.104083

Domingo N. Understanding piezocatalysis, pyrocatalysis and ferrocatalysis. Frontiers Nanotechnol. 2024;6:1320503. doi:10.3389/FNANO.2024.1320503




DOI: https://doi.org/10.15826/chimtech.2025.12.2.16

Copyright (c) 2025 Daud A. Selimov, Dinara Sobola, Abdulatip Shuaibov, Richard Schubert, Rashid Gulakhmedov, Alina Rabadanova, Asiyat Magomedova, Farid Orudzhev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice