Cover Image

Adsorption isotherms, thermodynamics, and kinetics of activated carbon as adsorbent to water pollutants: a review

Muhamad Jalil Baari, La Rudi, La Harimu

Abstract


Water pollutants, such as dyes and heavy metals, which cause various health and environmental problems, challenge researchers to investigate activated carbon-based adsorbents. These adsorbents are obtained from natural sources or waste, so they are environmentally friendly. The literature reveals that the adsorption capacities of activated carbons obtained from experiments, isotherm equations, and kinetic equations are relatively high but vary in value. The abundance of functional groups as active sites and the spread of pores or cavities on the adsorbent surface affect the efficiency of adsorption. This review aims to overview the adsorption isotherms, thermodynamic properties, and kinetic behaviors of several activated carbons from natural sources and waste. The maximum adsorption capacity of the dyes is in the range of 2.0–1169.25 mg∙g–1, while the maximum adsorption capacity of heavy metals is in the range of 0.488–312.5 mg∙g–1. The different adsorption mechanisms, the convenience of adsorption, adsorption energy, the spontaneity of adsorption, and the rate-determining step are described for each type of activated carbon. Therefore, specified information about their performances toward different water pollutants can be evaluated. Moreover, potential improvements in the performance of existing adsorbents can be gained through further research based on the findings of this review.

Keywords


activated carbon; adsorbent; adsorption isotherms; kinetics; thermody-namics; water pollutants

Full Text:

PDF

References


Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. J Photochem Photobiol A Chem. 2003;157(1):111–116. doi:10.1016/S1010-6030(03)00015-7

Zhou Y, Lu J, Zhou Y, Liu Y. Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut. 2019;252:352–365. doi:10.1016/j.envpol.2019.05.072

Haldorai Y, Kharismadewi D, Tuma D, Shim JJ. Properties of chitosan/magnetite nanoparticles composites for efficient dye adsorption and antibacterial agent. Korean J Chem Eng. 2015;32(8):1688–1693. doi:10.1007/s11814-014-0368-9

Vezentsev AI, Thuy DM, Goldovskaya-Peristaya LF, Glukhareva NA. Adsorption of methylene blue on the composite sorbent based on bentonite-like clay and hydroxyapatite. Indones J Chem. 2018;18(4):733–741. doi:10.22146/ijc.37050

Jasim AQ, Ajjam SK. Removal of heavy metal ions from wastewater using ion exchange resin in a batch process with kinetic isotherm. South African J Chem Eng. 2024;49:43–54. doi:10.1016/j.sajce.2024.04.002

Hassan MM, Carr CM. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018;209:201–219. doi:10.1016/j.chemosphere.2018.06.043

Harimu L, Matsjeh S, Siswanta D, Santosa SJ, Baari MJ. Application of poly(ethyl eugenyl oxyacetate) compounds as the ions carrier for heavy metals separation and separation of Fe and Ni in ferronickel using liquid membrane transport method. Indones J Chem. 2022;22(4):1002–1013. doi:10.22146/ijc.72486

Sun Y, Zhou S, Pan SY, Zhu S, Yu Y, Zheng H. Performance evaluation and optimization of flocculation process for removing heavy metal. Chem Eng J. 2020;385:123911. doi:10.1016/j.cej.2019.123911

Utami M, Wang S, Musawwa MM, Purbaningtias TE, Fitri M, Yuspita I, Abd-Elkader OH, Yadav KK, Munusamy-Ramanujam G, Bang D, Chang SW, Ravindran B. Simultaneous photocatalytic removal of organic dye and heavy metal from textile wastewater over N-doped TiO2 on reduced graphene oxide. Chemosphere. 2023;332:138882. doi:10.1016/j.chemosphere.2023.138882

Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem. 2017;10:S1445–S1451. doi:10.1016/j.arabjc.2013.04.021

Mittal A, Thakur V, Gajbe V. Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ Sci Pollut Res. 2013;20(1):260–269. doi:10.1007/s11356-012-0843-y

Martínez ML, Torres MM, Guzmán CA, Maestri DM. Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crops Prod. 2006;23(1):23–28. doi:10.1016/j.indcrop.2005.03.001

Anshar AM, Taba P, Raya I. Kinetic and thermodynamics studies on the adsorption of phenol on activated carbon from rice husk activated by ZnCl2. Indones J Sci Technol. 2016;1(1):47–60. doi:10.17509/ijost.v1i1.2213

Sudaryanto Y, Hartono SB, Irawaty W, Hindarso H, Ismadji S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol. 2006;97(5):734–739. doi:10.1016/j.biortech.2005.04.029

Zhou J, Luo A, Zhao Y. Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J Air Waste Manag Assoc. 2018;68(12):1269–1277. doi:10.1080/10962247.2018.1460282

Pereira RG, Veloso CM, Da Silva NM, De Sousa LF, Bonomo RCF, De Souza AO, Da Guarda Souza MO, Da Costa Ilhéu Fontan R. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol. 2014;126:476–486. doi:10.1016/j.fuproc.2014.06.001

Deng H, Yang L, Tao G, Dai J. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution. J Hazard Mater. 2009;166(2–3):1514–1521. doi:10.1016/j.jhazmat.2008.12.080

Illingworth JM, Rand B, Williams PT. Non-woven fabric activated carbon produced from fibrous waste biomass for sulphur dioxide control. Process Saf Environ Prot. 2019;122:209–220. doi:10.1016/j.psep.2018.12.010

Corda NC, Kini MS. A Review on Adsorption of Cationic Dyes using Activated Carbon, MATEC Web Conf. 2018;144:02022. doi:10.1051/matecconf/201814402022

Czikkely M, Neubauer E, Fekete I, Ymeri P, Fogarassy C. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water (Switzerland). 2018;10(10):1–15. doi:10.3390/w10101377

Arora R. Adsorption of Heavy Metals–A Review. Mater Today Proc. 2019;18:4745–4750. doi:10.1016/j.matpr.2019.07.462

Deliyanni EA, Kyzas GZ, Triantafyllidis KS, Matis KA. Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chem. 2015;13(1):699–708. doi:10.1515/chem-2015-0087

Aprile A, De Bellis L. Editorial for special issue “heavy metals accumulation, toxicity, and detoxification in plants,”. Int J Mol Sci. 2020;21(11):1–5. doi:10.3390/ijms21114103

Hawkes SJ. What is a “Heavy Metal”?. J Chem Educ. 1997;74(11):1374. doi:10.1021/ed074p1374

Sureshkumar H. Removal of Heavy Metals from wastewater: A review. Ijaiem. 2015;4(10):19–22.

Kurniawan TA, Chan GYS, Lo WH, Babel S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J. 2006;118(1–2):83–98. doi:10.1016/j.cej.2006.01.015

Aziz HA, Adlan MN, Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour Technol. 2008;99(6):1578–1583. doi:10.1016/j.biortech.2007.04.007

Hong YJ, Liao W, Yan ZF, Bai YC, Feng CL, Xu ZX, Xu DY. Progress in the Research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J Chem. 2020;2020:1–12. doi:10.1155/2020/9010348

Theophanides T, Anastassopoulou J. Copper and carcinogenesis. Crit Rev Oncol Hematol. 2002;42(1):57–64. doi:10.1016/S1040-8428(02)00007-0

Dean JG, Bosqui FL, Lanouette KH. Removing heavy metals from wastewater. Environ Sci Technol. 1972;6(6):518–522. doi:10.1021/es60065a006

Qasem NAA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water. 2021:4(1):36. doi:10.1038/s41545-021-00127-0

Ishmaturrahmi I, Rahmi R, Mustafa I. The influence of Fe3O4 on magnetic chitosan composite preparation for methylene blue removal from water. IOP Conf Ser Mater Sci Eng. 2019;523(1):4–11. doi:10.1088/1757-899X/523/1/012020

Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: A review. J Hazard Mater. 2010;177(1–3):70–80. doi:10.1016/j.jhazmat.2009.12.047

Altass HM, Morad M, Khder AERS, Mannaa MA, Jassas RS, Alsimaree AA, Ahmed SA, Salama RS. Enhanced catalytic activity for CO oxidation by highly active Pd nanoparticles supported on reduced graphene oxide /Copper metal organic framework. J Taiwan Inst Chem Eng. 2021;128:194–208. doi:10.1016/j.jtice.2021.08.034

Gupta VK, Suhas S. Application of low-cost adsorbents for dye removal – A review. J Environ Manage. 2009;90(8):2313–2342. doi:10.1016/j.jenvman.2008.11.017

Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface Sci. 2014;209:174–182. doi:10.1016/j.cis.2014.04.002

Esvandi Z, Foroutan R, Peighambardoust SJ, Akbari A, Ramavandi B. Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surfaces and Interfaces. 2020;21:100754. doi:10.1016/j.surfin.2020.100754

Wi E, Go S, Shin SY, Cheon HJ, Jeong G, Cheon H, Kim J, Jung HR, Kim H, Chang M. Highly efficient and selective removal of anionic dyes from aqueous solutions using magneto-responsive Fe-aminoclay/Fe2O3/polyvinyl alcohol composite microgels. Chem Eng J. 2023;454:140309. doi:10.1016/j.cej.2022.140309

Ngulube T, Gumbo JR, Masindi V, Maity A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J Environ Manage. 2017;191:35–57. doi:10.1016/j.jenvman.2016.12.031

Ong ST, Lee CK, Zainal Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour Technol. 2007;98(15):2792–2799. doi:10.1016/j.biortech.2006.05.011

Lin K, Zhao H. The Impact of Green finance on the ecologicalization of urban industrial structure—Based on GMM of dynamic panel system. J Artif Intell Technol. 2022;2:123–129. doi:10.37965/jait.2022.0115

Tan CHC, Sabar S, Hussin MH. Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South African J Chem Eng. 2018;26:11–24. doi:10.1016/j.sajce.2018.08.001

Neolaka YAB, Riwu AAP, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem. 2023;5:100711. doi:10.1016/j.rechem.2022.100711

Sun G, Xu X. Sunflower stalks as adsorbents for color removal from textile wastewater. Ind Eng Chem Res. 1997;36(3):808–812. doi:10.1021/ie9603833

Naidu AL, Sudarshan B, Krishna KH. Study on mechanical behavior of groundnut shell fiber reinforced polymer metal matrix composities. Int J Study Mech Behav Groundn Shell Fiber Reinf Polym Met Matrix Compos. 2013;2 Februari.

Cuhadaroglu D, Uygun OA. Production and characterization of activated carbon from a bituminous coal by chemical activation. African J Biotechnol. 2008;7(20):3706–3713.

Lillo-Ródenas MA, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH. Carbon N Y. 2001;39(5):751–759. doi:10.1016/S0008-6223(00)00186-X

Aldawsari A, Khan MA, Hameed BH, AlOthman ZA, Siddiqui, MR, Ahmed AYBH, Alsohaimi IH. Development of activated carbon from phoenix dactylifera fruit pits: Process optimization, characterization, and methylene blue adsorption. Desalin Water Treat. 2017;62:273–281. doi:10.5004/dwt.2017.0529

Sangon S, Hunt AJ, Attard TM, Mengchang P, Ngernyen Y, Supanchaiyamat N. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod. 2018;172:1128–1139. doi:10.1016/j.jclepro.2017.10.210

Baysal M, Bilge K, Yılmaz B, Papila M, Yürüm Y. Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal. J Environ Chem Eng. 2018;6(2):1702–1713. doi:10.1016/j.jece.2018.02.020

Yun CH, Park YH, Park CR. Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon N Y. 2001;39(4):559–567. doi:10.1016/S0008-6223(00)00163-9

Sajjadi SA, Meknati A, Lima EC, Dotto GL, Mendoza-Castillo DI, Anastopoulos I, Alakhras F, Unuabonah EI, Singh P, Hosseini-Bandegharaei A. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manage. 2019;236:34–44. doi:10.1016/j.jenvman.2019.01.087

Ma R, Qin X, Liu Z, Fu Y. Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by Zncl2 activation. Materials (Basel). 2019;12(9):1377. doi:10.3390/ma12091377

Carraro PS, Spessato L, Crespo LHS, Yokoyama JTC, Fonseca JM, Bedin KC, Ronix A, Cazetta AL, Silva TL, Almeida VC. Activated carbon fibers prepared from cellulose and polyester–derived residues and their application on removal of Pb2+ ions from aqueous solution. J Mol Liq. 2019;289:111150. doi:10.1016/j.molliq.2019.111150

Budarin V, Clark J, Deswarte F, Hardy J, Hunt A, Kerton F. Delicious not siliceous: Expanded carbohydrates as renewable separation media for column chromatography. Chem Commun (Camb). 2005;23:2903–2905. doi:10.1039/b502330k

Butcher DJ. The Essence of Chromatography By Colin F. Poole. J Am Chem Soc. 2003;125(33):10144–10145. doi:10.1021/ja033507t

Muslim A, Ellysa E, Said SD. Cu(II) ion adsorption using activated carbon prepared from pithecellobium jiringa (Jengkol) shells with ultrasonic assistance: isotherm, kinetic and thermodynamic studies. J Eng Technol Sci. 2017;49(4):472–490. doi:10.5614/j.eng.technol.sci.2017.49.4.4

Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH. Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. J Taiwan Inst Chem Eng. 2017;74:96–104. doi:10.1016/j.jtice.2017.01.016

Alcaraz L, Fernández AL, García-Díaz I, López FA. Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue. Adsorpt Sci Technol. 2018;36(5–6):1331–1351. doi:10.1177/0263617418770295

Centeno TA, Stoeckli F. The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT. Carbon N Y. 2010;48(9):2478–2486. doi:10.1016/j.carbon.2010.03.020

Khuluk RH, Rahmat A, Buhani B, Suharso S. Removal of Methylene blue by adsorption onto activated carbon from coconut shell (Cocous Nucifera L.). Indones J Sci Technol. 2019;4(2):229–240. doi:10.17509/ijost.v4i2.18179

El Jery A, Alawamleh HSK, Sami MH, Abbas HA, Sammen SS, Ahsan A, Imteaz MA, Shanableh A, Shafiquzzaman M, Osman H, Al-Ansari N. Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon. Sci Rep. 2024;14(1):1–12. doi:10.1038/s41598-023-50937-0

Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese J Chem Eng. 2021;32:281–290. doi:10.1016/j.cjche.2020.09.070

Jawad AH, Abdulhameed AS. Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy Ecol Environ. 2020;5(6):456–469. doi:10.1007/s40974-020-00177-z

El Maguana Y, Elhadiri N, Benchanaa M, Chikri R. Activated carbon for dyes removal: modeling and understanding the adsorption process. J Chem. 2020;2020:1–9. doi:10.1155/2020/2096834

Maguana Y. El Elhadiri N, Bouchdoug M, Benchanaa M, Jaouad A. Activated carbon from prickly pear seed cake : Optimization of preparation conditions using experimental design and its application in dye removal. Int J Chem Engineer. 2019;2019:1–12. doi:10.1155/2019/8621951

El Maguana Y. Elhadiri N, Benchanaa M, Chikri R. Adsorption thermodynamic and kinetic studies of methyl orange onto sugar scum powder as a low-cost inorganic adsorbent. J Chem. 2020;2020:1–10. doi:10.1155/2020/9165874

Kheddo A, Rhyman L, Elzagheid MI, Jeetah P, Ramasami P. Adsorption of synthetic dyed wastewater using activated carbon from rice husk. SN Appl Sci. 2020;2(12):1–14. doi:10.1007/s42452-020-03922-5

Mopoung S, Dejang N. Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Sci Rep. 2021;11(1):1–9. doi:10.1038/s41598-021-93249-x

Pagalan E, Sebron M, Gomez S, Salva SJ, Ampusta R, Macarayo AJ, Joyno C, Ido A, Arazo R. Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Ind Crops Prod. 2020;145(June):111953. doi:10.1016/j.indcrop.2019.111953

Wang D, Wang Z, Zheng X, Tian M. Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: Novel efficient adsorbent for methylene blue. Ind Crops Prod. 2020;148:112319. doi:10.1016/j.indcrop.2020.112319

Guo H, Bi C, Zeng C, Ma W, Yan L, Li K, Wei K. Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J Mol Liq. 2018;249:629–636. doi:10.1016/j.molliq.2017.11.096

Hashem HM, El-Maghrabey M, El-Shaheny R. Inclusive study of peanut shells derived activated carbon as an adsorbent for removal of lead and methylene blue from water. Sci Rep. 2024;14(1):1–24. doi:10.1038/s41598-024-63585-9

Samiyammal P, Kokila A, Pragasan LA, Rajagopal R, Sathya R, Ragupathy S, Krishnakumar M, Reddy VRM. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm. Environ Res. 2022;212(PD):113497. doi:10.1016/j.envres.2022.113497

Deivasigamani P, Kumar PS, Sundaraman S, Soosai MR, Renita AA, Karthikeyan M, Bektenov N, Baigenzhenov O, Venkatesan D, Kumar JA. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. Environ Res. 2023;236:116735. doi:10.1016/j.envres.2023.116735

Yaqub A, Syed SM, Ajab H, Zia Ul Haq M. Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. J Environ Manage. 2023;327:116925. doi:10.1016/j.jenvman.2022.116925

Alkhabbas M, Al-Ma’abreh AM, Edris G, Saleh T, Alhmood H. Adsorption of anionic and cationic dyes on activated carbon prepared from oak cupules: Kinetics and Thermodynamics studies. Int J Environ Res Public Health. 2023;20(4):3280. doi:10.3390/ijerph20043280

Van Thuan T, Quynh BTP, Nguyen TD, Ho VTT, Bach LG. Response surface methodology approach for optimization of Cu2+, Ni2+, and Pb2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces. 2017;6:209–217. doi:10.1016/j.surfin.2016.10.007

Muslim A. Australian Pine Cones-Based Activated Carbon for Adsorption of Copper in Aqueous Solution. J Eng Sci Technol. 2017;12(2):280–295.

Enniya I, Rghioui L, Jourani A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm. 2018;7(December 2017):9–16. doi:10.1016/j.scp.2017.11.003

Chu B, Amano Y, Machida M. Preparation of bean dreg derived N-doped activated carbon with high adsorption for Cr(VI). Colloids Surfaces A Physicochem Eng Asp. 2020;586(VI):124262. doi:10.1016/j.colsurfa.2019.124262

Kharrazi SM, Mirghaffari N, Dastgerdi MM, Soleimani M. A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technol. 2020;366:358–368. doi:10.1016/j.powtec.2020.01.065

Changmai M, Banerjee P, Nahar K, Purkait MK. A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co(II) from aqueous solution: Kinetic and equilibrium studies. J Environ Chem Eng. 2018;6(1):246–257. doi:10.1016/j.jece.2017.12.009

Boeykens SP, Redondo N, Obeso RA, Caracciolo N, Vázquez C. Chromium and Lead adsorption by avocado seed biomass study through the use of total Reflection X-Ray fluorescence analysis. Appl Radiat Isot. 2019;153(June):108809. doi:10.1016/j.apradiso.2019.108809

Karim MA, Yuniar H, Lestari CC, Widowati TW. Removal of heavy metals from textile wastewater using a mixture of carbon from bare hands and carbide waste as an adsorbent. J Ecol Eng. 2024;25(1):245–255. doi:10.12911/22998993/175248

Touzani I, El Machrafi I, Harboul K, Boudouch O, Alouiz I, Hammani K, Flouchi R, Fikri-Benbrahim K. Evaluation of activated carbons prepared from bioprecursors for the removal of cadmium and chromium (VI). Appl Environ Soil Sci. 2024;2024:1–11. doi:10.1155/2024/8663114

Ishar I, Taba P, Fahruddin F. Effectiveness of activated carbon from nutmeg shell (Myristica fragrans) waste as adsorbent for metal ions Pb(II) and Cu(II) in liquid waste. Nat Environ Pollut Technol. 2024;23(2):1075–1083. doi:10.46488/nept.2024.v23i02.041

Sukmono Y, Kristanti RA, Foo BV, Hadibarata T. Adsorption of Fe and Pb from aqueous solution using coconut shell activated carbon. Biointerface Res Appl Chem. 2024;14(2):1–14. doi:10.33263/BRIAC142.030

Al-Ma’Abreh AM, Hmedat DA, Edris G, Hamed MA. Removal of heavy metal ions (Pb2+, Co2+, and Cd2+) by Activated carbon from cypress fruit: an investigation of kinetics, thermodynamics, and isotherms. J Chem. 2024;2024:1–13. doi:10.1155/2024/1984821

Osasona I, Aiyedatiwa K, Johnson JA, Faboya OL. Activated carbon from spent brewery barley husks for cadmium ion adsorption from aqueous solution. Indones J Chem. 2018;18(1):145–152. doi:10.22146/ijc.22422

Hassan AF, Elhadidy H. Production of activated carbons from waste carpets and its application in methylene blue adsorption: Kinetic and thermodynamic studies. J Environ Chem Eng. 2017;5(1):955–963. doi:10.1016/j.jece.2017.01.003

Nhi NTT, Tho NTM, Anh NTH. An efficient adsorbent for the removal of dyes prepared by an in situ growth of ZIF-8 onto activated carbon. Green Chem Lett Rev. 2024;17(1):1–16. doi:10.1080/17518253.2024.2377555

Fisli A, Safitri RD, Nurhasni N, Dewi SH, Deswita D. Isotherm, kinetics, and thermodynamics adsorption studies of dye onto Fe3O4-waste paper activated carbon composites. J Teknologi. 2021;83(1):45–55. doi:10.11113/jurnalteknologi.v83.14991

Ali F, Ali N, Bibi I, Said A, Nawaz S, Ali Z, Salman SM, Iqbal HMN, Bilal M. Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Stud Chem Environ Eng. 2020;2(September):100040. doi:10.1016/j.cscee.2020.100040

Liu Y, Huo Z, Song Z, Zhang C, Ren D, Zhong H, Jin F. Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. J Taiwan Inst Chem Eng. 2019;96:575–587. doi:10.1016/j.jtice.2018.11.017

Mabalane K, Thabede PM, Shooto ND. Activated carbon from paper waste as potential adsorbents for methylene blue and hexavalent chromium. Appl Sci. 2024;14(11):4585. doi:10.3390/app14114585

Al-Hazeef MSF, Aidi A, Hecini L, Osman AI, Hasan GG, Althamthami M, Ziad S, Otmane T, Rooney DW. Valorizing date palm spikelets into activated carbon-derived composite for methyl orange adsorption: advancing circular bioeconomy in wastewater treatment—a comprehensive study on its equilibrium, kinetics, thermodynamics, and mechanisms. Environ Sci Pollut Res. 2024;31(38):50493–50512. doi:10.1007/s11356-024-34581-3

Tsai WC, de Luna MDG, Bermillo-Arriesgado HLP, Futalan CM, Colades JI, Wan MW. Competitive fixed-bed adsorption of Pb(II), Cu(II), and Ni(II) from aqueous solution using chitosan-coated bentonite. Int J Polym Sci. 2016;2016(1):1608939. doi:10.1155/2016/1608939

Abdulhameed A, AbdulKarim-Talaq M, Jawad AH. Modeling and mechanism of reactive orange 16 dye adsorption by chitosan-glyoxal/ TiO2 nanocomposite: application of response surface methodology. Desalin water Treat. 2019;164:346–360. doi:10.1155/2016/1608939

Safa Y, Bhatti HN. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalin. 2011;272(1):313–322. doi:10.1016/j.desal.2011.01.040

Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2–10. doi:10.1016/j.cej.2009.09.013

Pezoti O, Cazetta AL, Souza IPAF, Bedin KC, Martins AC, Silva TL, Almeida VC. Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.). J Ind Eng Chem. 2014;20(6):4401–4407. doi:10.1016/j.jiec.2014.02.007

Benmessaoud A, Nibou D, Mekatel EH, Amokrane S. A comparative study of the linear and non-linear methods for determination of the optimum equilibrium isotherm for adsorption of Pb2+ ions onto Algerian treated clay. Iran J Chem Chem Eng. 2020;39(4):153–171. doi:10.1016/j.jiec.2014.02.007

Huang CH, Chang KP, Ou HD, Chiang YC, Wang CF. Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater. 2011;141(1).102–109. doi:10.1016/j.micromeso.2010.11.002

Mittal H, Ray SS. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol. 2016;88:66–80. doi:10.1016/j.micromeso.2010.11.002

Gao JJ, Qin YB, Zhou T, Cao DD, Xu P, Hochstetter D, Wang YF. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. J Zhejiang Univ Sci B. 2013;14(7):650–658. doi:10.1631/jzus.B12a0225

Tran HN, You SJ, Chao HP. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J Environ Chem Eng. 2016;4(3):26712–682. doi:10.1016/j.jece.2016.05.009

Kumar KV, Sivanesan S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J Hazard Mater. 2005;126(1):198–201.

doi:10.1016/j.jhazmat.2005.06.007

Parimal S, Prasad M, Bhaskar U. Prediction of Equilibrium Sorption Isotherm: Comparison of Linear and Nonlinear Methods. Ind Eng Chem Res. 2010;49(6):2882–2888. doi:10.1021/ie9013343

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–1403. doi:10.1021/ja02242a004

McKay G. Use of adsorbents for the removal of pollutants from wastewaters. Boca Raton: CRC Press;1995.FL SE- 86 p: illustrations.

Vitek R, Masini JC. Nonlinear regression for treating adsorption isotherm data to characterize new sorbents: Advantages over linearization demonstrated with simulated and experimental data. Heliyon. 2023;9(4):e15128. doi:10.1016/j.heliyon.2023.e15128

Jong ST, Yoo CY, Kiew PL. Feasibility study of methylene blue adsorption using magnetized papaya seeds. Prog Energy Environ. 2020;14(1):1–12.

Serafin J, Dziejarski B. Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous Mesoporous Mater. 2023;354(January):112513. doi:10.1016/j.micromeso.2023.112513

Prasad RK, Srivastava SN. Sorption of distillery spent wash onto fly ash: Kinetics and mass transfer studies. Chem Eng J. 2009;146(1):90–97. doi:10.1016/j.cej.2008.05.021

Günay A, Arslankaya E, Tosun İ. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater. 2007;146(1):362–371. doi:10.1016/j.jhazmat.2006.12.034

Tóth J. Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature. J Colloid Interface Sci. 2000;225(2):378–383. doi:10.1006/jcis.2000.6723

Buhani B, Narsito N, Nuryono N, Kunarti ES, Suharso S.. Adsorption competition of Cu(II) ion in ionic pair and multi-metal solution by ionic imprinted amino-silica hybrid adsorbent, Desalin Water Treat. 2015;55(5):1240–1252. doi:10.1080/19443994.2014.924880

Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM. Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalin. 2009;247(1):636–646. doi:10.1016/j.desal.2009.01.007

Chen D, Chen J, Luan X, Ji H, Xia Z. Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J. 2011;171(3):1150–1158. doi:10.1016/j.cej.2011.05.013

Khamirchi R, Hosseini-Bandegharaei A, Alahabadi A, Sivamani S, Rahmani-Sani A, Shahryari T, Anastopoulos I, Miri M, Tran HN. Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples. Ecotoxicol Environ Saf. 2018;150:136–143. doi:10.1016/j.ecoenv.2017.12.039

Li L, Liu F, Duan H, Wang X, Li J, Wang Y, Luo C. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surface B Biointerface. 2016;141:253–259. doi:10.1016/j.colsurfb.2015.06.023

Azizian S, Eris S, Wilson LD. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem Phys. 2018;513:99–104. doi:10.1016/j.chemphys.2018.06.022

Baseri JR, Palanisamy PN, Siva Kumar P. Adsorption of basic dyes from synthetic textile effluent by activated carbon prepared from Thevetia peruviana. Indian J Chem Technol. 2012;19(5):311–321.

Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–465. doi:10.1016/j.jhazmat.2005.12.043

Aroua MK, Leong SPP, Teo LY, Yin CY, Daud WMAW. Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode. Bioresour Technol. 2008;99(13):5786–5792. doi:10.1016/j.biortech.2007.10.010

Benjelloun M, Miyah Y, Akdemir Evrendilek G, Zerrouq F, Lairini S. Recent advances in adsorption kinetic models: their application to dye types, Arab J Chem. 2021;14(4):103031. doi:10.1016/j.arabjc.2021.103031

Ho YS. Review of second-order models for adsorption systems, J Hazard Mater. 2006;136(3):681–689. doi:10.1016/j.jhazmat.2005.12.043

Islam MA, Benhouria A, Asif M, Hameed BH. Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J Taiwan Inst Chem Eng. 2015;52:57–64. doi:10.1016/j.jtice.2015.02.010

Zhang X, Lv L, Qin Y, Xu M, Jia X, Chen Z. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour Technol. 2018;256:1–10.

doi:10.1016/j.biortech.2018.01.145

Njoku VO, Islam MA, Asif M, Hameed BH. Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. J Anal Appl Pyrolysis. 2014;110:172–180. doi:10.1016/j.jaap.2014.08.020




DOI: https://doi.org/10.15826/chimtech.2025.12.2.4

Copyright (c) 2025 Muhamad Jalil Baari, La Rudi, La Harimu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice