Cover Image

Rapid voltammetric determination of hemagglutinin in saliva using magnetic nanoparticles modified with triazolotriazine in a portable cell design

Yulia Sabitova, Tatiana Svalova, Margarita Medvedeva, Natalia Malysheva, Vladimir Rusinov, Anatoly Matern, Alisa Kozitsina

Abstract


Express determination of the viral nature of the diseases is one of the most important tasks of modern medicine. Portable electrochemicalanalytical devices are used to complement standard laboratory analytical methods and implement analysis at the patient's bedside. A rapid approach of voltammetric determination of the viral marker protein hemagglutinin (НA) in saliva using portable electrochemical microcell based on the three-electrode planar system (TPS) and magnetite nanoparticles modified with 3-nitro-4‑hydroxy-1,4-dihydro-7-propargylthio-1,2,4-triazolo[5,1-c][1,2,4]triazine (MNPs-Aza) was developed. MNPs-Aza were synthesized by carbodiimide cross-linking and characterized by infrared spectroscopy and square wave voltammetry. Modified MNPs were used simultaneously as carriers of the HA receptor and as agents for HA-Aza complexes concentrating on the surface of the working electrode. The normalized difference between the peak current values of the first stage of electroreduction of Aza before and after selective interaction with the HA in the analyzed sample (I*) was used as the analytical signal. Under the selected operating conditions of the developed portable microcell, linear calibration I* = (12.81±0.26) lg сHA + (136.75±1.73) was obtained in the range of 10–3–10–9 M. The limit of detection (LOD) calculated by the 3σ criteria was 8.4·10–10 M. The developed approach was successfully tested on model solutions and real saliva samples.

Keywords


Hemagglutinin; 3-nitro-4 hydroxy-1,4-dihydro-7-propargylthio-1,2,4-triazolo[5,1- c][1,2,4]triazine; portable electrochemical micro-cell; magnetite nanoparticles; voltammetric rapid analysis; three-electrode planar system

Full Text:

PDF

References


Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses. 2020;12(2):211. doi:10.3390/v12020211

Elaheh K.Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coordinat Chem Rev. 2022;464:214559. doi:10.1016/j.ccr.2022.214559

Ozer T, Geiss BJ, Henry ChS. Review—Chemical and Biological Sensors for Viral Detection. Electrochem Soc. 2020;167(3):037523. doi:10.1149/2.0232003JES

Nirbhaya V, Chaudhary C, Chandra R, Kumar S. Biofunctionalized carbonaceous nanoflakes based efficient electrochemical biosensor for SAA biomarker detection. Appl Surf Sci Adv. 2023;13:100368. doi:10.1016/j.apsadv.2023.100368

Gish RG, Gutierrez JA, Navarro-Cazarez N, Giang K, Adler D, Tran B, Locarnini S, Hammond R, Bowden S. A simple and inexpensive point-of-care test for hepatitis B surface antigen detection: serological and molecular evaluation. J Viral Hepatitis. 2014;21(12):905–8. doi:10.1111/jvh.12257

Miyoshi-Akiyama T, Narahara K, Mori S, Kitajima H, Kase T, Morikawa S, Kirikae T. Development of an Immunochromatographic Assay Specifically Detecting Pandemic H1N1 Influenza Virus. J Clinical Microbiol. 2009;48(3):703–8. doi:10.1128/jcm.02262-09

Sakurai A, Takayama K, Nomura N, Kajiwara N, Okamatsu M, Yamamoto N, Tamura T, Yamada J. Fluorescent Immunochromatography for Rapid and Sensitive Typing of Seasonal Influenza Viruses. PLoS ONE. 2015;10(2):e0116715. doi:10.1371/journal.pone.0116715

Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. ChemSocRev. 2013;12:5425–38. doi:10.1039/C3CS35518G

Zhu Ch, Yang G, Li H, Du D, Lin Yu. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal Chem. 2015;87(1):230–249. doi:10.1021/ac5039863

Fablani L, Saroglia M, Fillo S, Luca V, Faggoni G, D’Amore N, Regalbuto E, Salvatori P. Magnetic based combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in salvia. Biosensors Bioelectronics. 2021;171:112686. doi:10.1016/j.bios.2020.112686

Nidzworski D, Siuzdak K, Niedziałkowski P, Bogdanowicz R, Sobaszek M, Ryl J, Weiher P, Sawczak M, Wnuk E, Goddard III WA, Jaramillo-Botero A, Ossowski T. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep. 2017;7(1):15707. doi:10.1038/s41598-017-15806-7

Svalova TS, Malysheva NN, Zaidullina RA, Medvedeva MV, Mazur AV, Morshchinin IV, Kozitsina AN. Novel electrochemical immunosensing platform based on magnetite-antibody conjugate as a direct signal label: design and application for Salmonella typhimurium. Anal Lett. 2023;56(16):2572–85. doi:10.1080/00032719.2023.2180015

Singla Pr, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem. 2015;102:39–57. doi:10.1016/j.ejmech.2015.07.037

Rusinov VL, Charushin VN, Chupakhin ON. Biologically active azolo-1,2,4-triazines and azolopyrimidines. Russ Chem Bull. 2018;67(4):573–599. doi:10.1007/s11172-018-2113-8

Ivoilova A, Mikhalchenko LV, Tsmokalyuk A, Leonova M, Lalov A, Mozharovskaia P, Kozitsina AN, Ivanova AV, Rusinov VL, Redox Conversions of 5-Methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4triazolo[1,5-a]pyrimidinide L-Arginine Monohydrate as a Promising Antiviral Drug. Molecules. 2021;26(16):5087. doi:10.3390/molecules26165087

Svalova TS, Medvedeva MV, Mazur AV, Drokin RA, Butorin II, Tsmokalyuk AN, Malysheva NN, Rusinov VL, Kozitsina AN. Voltammetric determination of hemagglutinin using triazolotriazine derivatives as agents for the biomolecule recognition. Electrochimica Acta. 2024;481:143954. doi:10.1016/j.electacta.2024.143954

Medvedeva MV, Mazur AV, Svalova TS, Balin IA, Rusinov VL, Matern AI, Kozitsina AN. Voltammetric determination of measles virus antibodies using a glassy carbon electrode modifed with 2-propargyltio-6-notro-7-hydroxy-4H-1,2,4-triazolo-4,7-dihydro[5,1-c]-1,2,4-triazine. J Anal Chem. 2024;78:1694–1700. doi:10.1134/S1061934823120109

Sucha L, Betteridge D, Kotrly S. Solution Equilibria in Analytical Chemistry London:Van Nostrand Reinhold Company: 1972. 371 p.

Drokin RA, Fesenko EA, Mozharovskaia PN, Medvedeva MV, Svalova TS, Kozitsina AN, EsaulkovaYaL, Volobueva AS, Zarubaev VV, Rusinov VV. 4-Hydroxy-3-nitro-1,4-dihydrotriazolo[5,1-c][1,2,4]triazines:synthesis, antiviral activity, and electrochemical characteristics. Russ Chem Bull. 2022;71(11):2460–6. doi:10.1007/s11172-022-3674-0

Liu ZL, Liu YJ, Yao KL, Ding ZH, Tao J, Wang X. Synthesis and Magnetic properties of Fe3O4. J Mater Synthesis Processing. 2002;10:83–87. doi:10.1023/A:1021231527095

Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases - similarities and differences. Adv Colloid Interface Sci. 2019;273:102034. doi:10.1016/j.cis.2019.102034




DOI: https://doi.org/10.15826/chimtech.2025.12.1.06

Copyright (c) 2024 Yulia Sabitova, Tatiana Svalova, Margarita Medvedeva, Natalia Malysheva, Vladimir Rusinov, Anatoly Matern, Alisa Kozitsina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International