Effect of MgCl2 dopant on optical properties of tamarind gum based biopolymer electrolytes
Abstract
Recent research on biopolymers based on magnesium salts is scarce in the existing literature. In the current research study, solution-casting technique was used for the preparation of solid biopolymer electrolytes, using Tamarind Seed Polysaccharide (TSP) as the host biopolymer, which was doped with several varying concentrations of magnesium chloride (MgCl2). UV-visible spectroscopic method was used to investigate the thermal and optical parameters in the wavelength range of 200 nm to 800 nm. From the study of optical absorption parameter, the values of optical transmission, optical refractive index, optical absorption coefficient and optical extinction coefficient were calculated. These parameters revealed optimum values for the film of composition TSP:MgCl2 (70:30 wt.%).
Keywords
Full Text:
PDFReferences
Jeschull F, Hub C, Kolesnikov TI, Sundermann D, Hernández G, Voll D, et al. Multivalent Cation Transport in Polymer Electrolytes – Reflections on an Old Problem. Adv Energy Mater. 202414(4):2302745. doi:10.1002/aenm.202302745
Kiran MG, Jyothi NK, Samatha K, Rao MP, N. Prasad VBV. Studies on optical properties of pva based complex polymer electrolyte. RJC. 2021;14(02):760–7. doi:10.31788/RJC.2021.1425964
Kurapati S, Gunturi SS, Nadella KJ, Erothu H. Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polym Bull. 2019;76(10):5463–81. doi:10.1007/s00289-018-2659-5
Makuła P, Pacia M, Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J Phys Chem Lett. 2018;9(23):6814–7. doi:10.1021/acs.jpclett.8b02892
Sreekanth K, Siddaiah T, Gopal NO, Madhava Kumar Y, Ramu Ch. Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. J Sci Adv Mater Devices. 2019;4(2):230–6. doi:10.1016/j.jsamd.2019.06.002
Gopalakrishnan R, Ashokkumar M. Comparative assessment of transition metals doping effects on structural, optical, optical conductivity, and photocatalytic features of ZnO nanoparticles. J Mater Sci Mater Electron. 2024ж35(24):1614. doi:10.1007/s10854-024-13395-6
Aziz SB, Brza MA, Nofal MM, Abdulwahid RT, Hussen SA, Hussein AM, et al. A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Mater. 2020;13(17):3675. doi:10.3390/ma13173675
P G, A C, R P. Reducing the Bandgap Energy via Doping Process in Lead-Free Thin Film Nanocomposites. Res Rev J Mat Sci [Internet]. 2017;05(01). Available from: https://www.rroij.com/open-access/reducing-the-bandgap-energy-via-doping-process-in-leadfree-thin-film-nanocomposites-2321-6212-1000162.php?aid=85596
Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE. Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics. 2011 May;189(1):63–8. doi:10.1016/j.ssi.2011.03.004
Rama Mohan K, Achari VBS, Rao VVRN, Sharma AK. Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polymer Testing. 2011;30(8):881–6. doi:10.1016/J.POLYMERTESTING.2011.08.010
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, et al. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev. 2021;121(3):1286–424. doi:10.1016/J.POLYMERTESTING.2011.08.010
Davis PW, Shilliday TS. Some Optical Properties of Cadmium Telluride. Phys Rev. 1960;118(4):1020–2. doi:10.1103/PhysRev.118.1020
Balkanski M, editor. Optical properties of solids. Reprint. Amsterdam: North-Holland; 1986. 633 p. (Handbook on semiconductors).
Sravanthi K, Sundari GS, Erothu H. Development of bio-degradable based polymer electrolytes for EDLC application. Optik. 2021;241:166229. doi:10.1016/j.ijleo.2020.166229
Mohan VM, Bhargav PB, Raja V, Sharma AK, Narasimha Rao VVR. Optical and Electrical Properties of Pure and Doped PEO Polymer Electrolyte Films. Soft Materials. 2007;5(1):33–46. doi:10.1080/15394450701405291
Abdullah OGh, Aziz SB, Rasheed MA. Effect of silicon powder on the optical characterization of Poly(methyl methacrylate) polymer composites. J Mater Sci: Mater Electron. 2017;28(5):4513–20. doi:10.1007/s10854-016-6086-9
Zhang ZP, Rong MZ, Zhang MQ. Self-healable functional polymers and polymer-based composites. Prog Polymer Sci. 2023;144:101724. doi:10.1016/j.progpolymsci.2023.101724
Prasanna U, Kumar Kambila V, Cheruku R, Nadella KJ, Kamma KV, Manju VV. Electrical, transport, and optical properties of a novel PVB-NaNO3 complexed solid polymer electrolyte thin-films for solid-state battery. Mater Today Proc. 2023;92:711–7.
Saha A, K. VK, N. KJ, M. GK, M.C. R. Optical properties and electric modulus studies of TSP: CH3COONa based biopolymer electrolytes. Optik. 2024;301:171661. doi:10.1016/j.ijleo.2024.171661
Di Capua R, Offi F, Fontana F. Check the Lambert–Beer–Bouguer law: a simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics. Eur J Phys. 20141;35(4):045025. doi:10.1088/0143-0807/35/4/045025
Fakkahi A, Kirak M, Sali A. Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot. Eur Phys J Plus. 2022;137(9):1068. doi:10.1140/epjp/s13360-022-03279-1
Ballato J, Foulger S, Smith, Jr. DW. Optical properties of perfluorocyclobutyl polymers. J Opt Soc Am B. 2003;20(9):1838. doi:10.1364/JOSAB.21.000958
Eldhose M, George C, John S, Joseph A, George L. Optical Properties of Biopolymers: Theoretical and Experimental Advances. In: Thomas S, Ar A, Jose Chirayil C, Thomas B, editors. Handbook of Biopolymers [Internet]. Singapore: Springer Nature Singapore. 2023;1–29. Available from: https://link.springer.com/10.1007/978-981-16-6603-2_9-1
Aziz SB, Abdullah OGh, Brza MA, Azawy AK, Tahir DA. Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Res Phys. 2019;15:102776. doi:10.1016/j.rinp.2019.102776
Shamekh AMA, Shaalan NM, Hanafy TA, Rashad M. Linear/nonlinear optical properties of functional inorganic MgO nano-filler in PVA transparent polymer for flexible optoelectronic devices. Physica B: Condensed Matter. 2023;651:414617. doi:10.1016/j.physb.2022.414617
Rekha Rani P, Venkateswarlu M, Mahamuda Sk, Swapna K, Deopa N, Rao AS. Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J Alloys Compd. 2019;787:503–18. doi:10.1016/j.jallcom.2019.02.088
Rashad M. Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Optical Mater. 2020;105:109857. doi:10.1016/j.optmat.2020.109857
Huo N, Tenhaeff WE. High Refractive Index Polymer Thin Films by Charge-Transfer Complexation. Macromolecules. 2023;56(5):2113–22. doi:10.1021/acs.macromol.2c02532
Mohamad AH, Saeed SR, Abdullah OG. Synthesis of very-fine PbS nanoparticles dispersed homogeneously in MC matrix: effect of concentration on the structural and optical properties of host polymer. Mater Res Express. 2019;6(11):115332. doi:10.1088/2053-1591/ab4b9a
Karthikeyan B, Hariharan S, Sasidharan A, Gayathri V, Arun T, Akbari-Fakhrabadi A, et al. Optical, vibrational and fluorescence recombination pathway properties of nano SiO2-PVA composite films. Optical Mater. 2019;90:139–44. doi:10.1016/j.optmat.2019.01.063
Mohammed MI, Bouzidi A, Zahran HY, Jalalah M, Harraz FA, Yahia IS. Ammonium iodide salt-doped polyvinyl alcohol polymeric electrolyte for UV-shielding filters: synthesis, optical and dielectric characteristics. J Mater Sci Mater Electron. 2021;32(4):4416–36. doi:10.1007/s10854-020-05184-8
Muhammad FF, Aziz SB, Hussein SA. Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J Mater Sci Mater Electron. 2015;26(1):521–9. doi:10.1007/s10854-014-2430-0
DOI: https://doi.org/10.15826/chimtech.2025.12.2.03
Copyright (c) 2024 Kaushik P.V.N.M., N. Krishna Jyothi, M. Gnana Kiran, I. Siva Ramakoti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice