Cover Image

Fisher-Tropsch synthesis in the presence of bifunctional catalysts based on hierarchical zeolite MFI

Olga Papeta, Ivan Zubkov, Alexey Saliev, Yash Kataria, Danila Ponomarev, Roman Yakovenko

Abstract


The effect of the hierarchical pore structure of ZSM-5 zeolites obtained by alkali modification on the composition of the synthesized products and the catalytic properties of bifunctional cobalt catalysts for the Fischer-Tropsch synthesis was studied. The bifunctional catalysts were prepared by mechanically mixing the Co-Al2O3/SiO2 catalyst, HZSM-5 zeolite and boehmite binder. The HZSM-5 zeolite was preliminarily subjected to alkali modification with different alkali concentrations (0.1, 0.25, 0.5, and 1.0 M) to create a hierarchical porous structure and change the acidic properties of the zeolite. The samples of ZSM-5 zeolites and the bifunctional catalysts prepared on their basis were characterized by SEM, low-temperature nitrogen adsorption-desorption, X-ray diffraction and H2 TPR. Catalytic tests were carried out in a tubular reactor with a fixed catalyst bed at a pressure of 2.0 MPa, a temperature of 250 °C and a gas space velocity of 1000 h–1. The tests were performed for 70–80 h of continuous operation. The fractional composition of the Fischer-Tropsch synthesis products was studied at a temperature of 250 °C. It was shown that preliminary treatment of zeolite ZSM-5 with a 0.5 M alkali solution contributed to an increase in the yield and productivity of branched hydrocarbons to 62% and 70.3 kg/(m3cat∙h) compared to a similar bifunctional catalyst based on the industrial microporous zeolite HZSM-5.

Keywords


Fischer-Tropsch synthesis, bifunctional catalysts, hierarchical zeolite MFI, alkaline modification, branched hydrocarbons.

Full Text:

PDF

References


Sadek R, Chalupka KA, Mierczynski P, Rynkowski J, Gurgul J, Dzwigaj S. Cobalt Based Catalysts Supported on Two Kinds of Beta Zeolite for Application in Fischer-Tropsch synthesis. Catalysts. 2019;9(6):497. doi:10.3390/catal9060497

Yakovenko RE, Zubkov IN, Savost’Yanov, AP., Soromotin VN, Krasnyakova TV, Papeta OP, Mitchenko SA. Hybrid Catalyst for the Selective Synthesis of Fuel Range Hydrocarbons by the Fischer–Tropsch Method. Kinet. Catal. 2021;62:172–180.doi:10.1134/S0023158421010122

Sineva LV, Asalieva EY, Mordkovich VZ. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts. Russ Chem Rev. 2015;84(11):1176–1189. doi:10.1070/RCR4464.

Glotov A, Vutolkina A, Pimerzin, A, Vinokurov V, Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem Soc Rev. 2021;50(16):9240–9277. doi:10.1039/D1CS00502B

Demikhova NR, Rubtsova MI, Vinokurov VA, Glotov AP. Isomerization of xylenes (a review). Pet Chem. 2021;61(6):737–759. doi:10.1039/D1CS00502B

Wang H, Wang Z, Wang S, Yang C, Li S, Gao P, Sun Y. The Effect of the Particle Size on Fischer–Tropsch Synthesis for ZSM-5 Zeolite Supported Cobalt-Based Catalysts. ChemComm. 2021;57(99):13522–13525. doi:10.1039/D1CC04844A

Vosmerikov AA, Vosmerikova LN, Vosmerikov AV. Studying the influence of alkaline treatment and modification of zeolite on its physical-chemical and catalytic properties in the process of propane conversion to olefin hydrocarbons. ChemChemTech [Izv Vyssh Uchebn Zaved Khim Khim Tekhnol]. 2024;67(8):50–58. doi:10.6060/ivkkt.20246708.11t

Velichkina LM, Gerasimov EY, Vosmerikov AV. Study of the combined effect of post-synthetic alkaline treatment and nickel modification of MFI zeolite on the dynamics of its deactivation in the process of refining straight-run gasoline. ChemChemTech [Izv Vyssh Uchebn Zaved Khim Khim Tekhnol]. 2024;67(8):103–112. doi:10.6060/ivkkt.20246708.10t

Fernandez S, Ostraat ML, Zhang K. Toward rational design of hierarchical beta zeolites: An overview and beyond. AIChE J. 2020;66(9):e16943. doi:10.1002/aic.16943

Singh BK, Kim Y, Kwon S., Na K. Synthesis of mesoporous zeolites and their opportunities in heterogeneous catalysis. Catalysts. 2021;11(12):1541. doi:10.3390/catal11121541

Hartmann M, Thommes M, Schwieger W. Hierarchically‐ordered zeolites: a critical assessment. Adv Mater Interfaces. 2021;8(4):2001841. doi:10.1002/admi.202001841

Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth zeolites, synthesis, characterization, and catalysis. Chemical Reviews. 2023;123(19):11664–11721. doi:10.1021/acs.chemrev.3c00373

Groen JC, Moulijn JA, Pérez-Ramírez J. Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem. 2006;16(22):2121–2131. doi:10.1039/B517510K

Bakun VG, Zubkov IN, Saliev AN, Savost’yanov AP, Yakovenko RE. Regulation of properties of a bifunctional cobalt catalyst for Fischer-Tropsch synthesis using hierarchical HBeta zeolite. ChemChemTech [Izv Vyssh Uchebn Zaved Khim Khim Tekhnol]. 2024;67(9):62–75. doi:10.6060/ivkkt.20246709.7049

Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J, Sels BF. State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv Mater. 2020;32(44):2004690. doi:10.1002/adma.202004690

Sadowska K, Góra-Marek K, Drozdek M, Kuśtrowski P, Datka J, Triguero JM, Rey F. Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide. Microporous Mesoporous Mater. 2013;168:195–205. doi:10.1016/j.micromeso.2012.09.033

Bai R, Song Y, Li Y, Yu J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 2019;1(6):601–611. doi:10.1016/j.trechm.2019.05.010

Oliveira DS, Lima RB, Pergher SB, Caldeira VP. Hierarchical zeolite synthesis by alkaline treatment: Advantages and applications. Catalysts. 2023;13(2):316. doi:10.3390/catal13020316

Kordala N, Wyszkowski M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules. 2024;29(5):1069. doi:10.3390/molecules29051069

Min JE, Kim S, Kwak G, Kim YT, Han SJ, Lee Y, Jun KW, Kim SK. Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catal Sci Technol. 2018;8(24):6346–6359. doi:10.1039/C8CY01931B

Sartipi S, Parashar K, Valero-Romero MJ, Santos VP, Van Der Linden B, Makkee M, Kapteijn F, Gascon J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J Catalysis. 2013;305:179–190. doi:10.1016/j.jcat.2013.05.012

Sartipi S, Alberts M, Santos VP, Nasalevich M, Gascon J, Kapteij F. ChemCatChem. Insights into the Catalytic Performance of Mesoporous H-ZSM-5-Supported Cobalt in Fischer–Tropsch Synthesis. 2014;6:142. doi:10.1002/cctc.201300635

Cheng K, Kang J, Huang S, You Z, Zhang Q, Ding J, Hua W, Lou Y, Deng W, Wang Y. Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catalysis. 2012;2(3):441–449. doi:10.1021/cs200670j

Yakovenko RE, Savost'yanov AP., Narochniy GB, Soromotin VN, Zubkov IN, Papeta OP, Mitchenko SA. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer–Tropsch synthesis combined with hydroprocessing. Catal Sci Technol. 2020;10(22):7613–7629. doi:10.1039/D0CY00975J

Savost'yanov AP, Narochnyi GB, Yakovenko RE, Bakun VG, Zemlyakov ND. Synthesis of high-molecular-weight hydrocarbons from CO and H2 over a cobalt catalyst. Catal Ind. 2014;6(4):292–297. doi:10.1134/S2070050414040151

Young RA. The Rietveld Method. Oxford University Press, 1995. 298 p.

Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A., Holmen A. J Catal. 1995;156(1):85.

Zhang C, Kwak G, Park HG, Jun KW, Lee YJ, Kang SC, Kim S. Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: Effects of alkali treatment on catalytic performance. Microporous and Mesoporous Mater. 2019;276:292–301. doi:10.1016/j.micromeso.2018.10.005

Beheshti MS, Ahmadpour J, Behzad M, Arabi H. Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene. Braz J Chem Eng. 2021;38:101–121.

Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A-Gen. 2012;449:188–197. doi:10.1016/j.apcata.2012.10.003

Savost’yanov AP, Yakovenko RE, Narochnyi GB, Bakun VG, Sulima SI, Yakuba ES, Mitchenko SA. Industrial catalyst for the selective Fischer–Tropsch synthesis of long-chain hydrocarbons. Kinet Catal. 2017;58:81–91. doi:10.1134/S0023158417010062

Potoczna-Petru D, Kępiński L. Reduction study of Co3O4 model catalyst by electron microscopy. Catal Lett. 2001;73:41–46. doi:10.1023/A:1009022202448

Sartipi S., Makkee M., Kapteijn F., Gascon J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catal Sci Technol. 2014;4(4):893–907. doi:10.1039/C3CY01021J

Li Z, Si M, Xin L, Liu R, Liu R, Lü J. Cobalt catalysts for Fischer–Tropsch synthesis: The effect of support, precipitant and pH value. Chin J Chem Eng. 2018;26(4):747–752. doi:10.1016/j.cjche.2017.11.001

Lillebø AH, Patanou E, Yang J, Blekkan EA, Holmen A. The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts. Catalysis Today. 2013;215:60–66. doi:10.1016/j.cattod.2013.03.030

Subramanian V, Zholobenko VL, Cheng K, Lancelot C, Heyte S, Thuriot J, Khodakov AY. The Role of Steric Effects and Acidity in the Direct Synthesis of iso‐Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem. 2016;8(2):380–389. doi:10.1002/cctc.201500777

Yakovenko RE, Bakun VG, Zubkov IN, Papeta OP, Saliev AN, Agliullin, MR, Savost’yanov AP. Fischer–Tropsch Synthesis on Bifunctional Cobalt Catalysts with the Use of Hierarchical Zeolite HBeta. Kinet Catal. 2022;63(4):399–411. doi:10.1134/S0023158422040139

Papeta OP, Bakun VG, Zubkov IN, Saliev AN, Savost’yanov AP, Yakovenko RE. Regulation of properties of a bifunctional cobalt catalyst for Fischer-Tropsch synthesis using hierarchical HBeta zeolite. ChemChemTech [Izv Vyssh Uchebn Zaved Khim Khim Tekhnol]. 2024;67(9):62–75. doi:10.6060/ivkkt.20246709.7049




DOI: https://doi.org/10.15826/chimtech.2025.12.1.14

Copyright (c) 2024 Olga Papeta, Ivan Zubkov, Alexey Saliev, Yash Kataria, Danila Ponomarev, Roman Yakovenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice