Cover Image

Phase composition and crystal structure of alumina-zirconia ceramics with varying LaAl11O18 content

Nina Cherkasova, Kristina Antropova, Aleksandr Legkodymov, Igor Nasennik, Georgiy Krivosheev, Urusveda Popova, Maria Zhulikova

Abstract


This study investigates the phase composition and structure of alumina-zirconia ceramics containing varying amounts of LaAl11O18 plates. The research addresses the significant influence of lanthanum hexaaluminate on the structural and physical properties of these ceramics, specifically focusing on its effects on crystal lattice parameters and phase volume content. Using synchrotron radiation and the Rietveld refinement method, the influence of lanthanum hexaaluminate content on the parameters of crystal lattices and phase content of the investigated materials were evaluated. Scanning electron microscopy was employed to analyze the grain size, morphology, and distribution within the material matrix. High-purity powders of α-Al2O3, 3Y-ZrO2, and La2O3 were used as initial materials. The materials were obtained by the pressureless sintering techniques in two hours at 1520 °C. A series of materials comprising 50 wt.% ZrO2 and varying percentage (0–15 wt.%) of LaAl11O18 was obtained. The coherent scattering regions of the alumina and zirconia matrix phases remained relatively unchanged in the composites. The coherent scattering regions of lanthanum hexaaluminate increased significantly with its concentration in the materials. The analysis revealed a decrease in alumina grain size with increasing LaAl11O18 content, while the size of the LaAl11O18 plates displayed a consistent increase. The best properties were observed for alumina-zirconia ceramics with the calculated content of lanthanum hexaaluminate of 12 wt.%. The relative density of this material is 95.3±0.3%, the hardness is 1490 Hv, and the indentation fracture resistance is 7.2±0.3 MPaThis study investigates the phase composition and structure of alumina-zirconia ceramics containing varying amounts of LaAl11O18 plates. The research addresses the significant influence of lanthanum hexaaluminate on the structural and physical properties of these ceramics, specifically focusing on its effects on crystal lattice parameters and phase volume content. Using synchrotron radiation and the Rietveld refinement method, the influence of lanthanum hexaaluminate content on the parameters of crystal lattices and phase content of the investigated materials were evaluated. Scanning electron microscopy was employed to analyze the grain size, morphology, and distribution within the material matrix. High-purity powders of α-Al2O3, 3Y-ZrO2, and La2O3 were used as initial materials. The materials were obtained by the pressureless sintering techniques in two hours at 1520 °C. A series of materials comprising 50 wt.% ZrO2 and varying percentage (0–15 wt.%) of LaAl11O18 was obtained. The coherent scattering regions of the alumina and zirconia matrix phases remained relatively unchanged in the composites. The coherent scattering regions of lanthanum hexaaluminate increased significantly with its concentration in the materials. The analysis revealed a decrease in alumina grain size with increasing LaAl11O18 content, while the size of the LaAl11O18 plates displayed a consistent increase. The best properties were observed for alumina-zirconia ceramics with the calculated content of lanthanum hexaaluminate of 12 wt.%. The relative density of this material is 95.3±0.3%, the hardness is 1490 Hv, and the indentation fracture resistance is 7.2±0.3 MPa.m1/2.

Keywords


LaAl11O18; alumina-zirconia; synchrotron radiation; Rietveld refinement method; hexaaluminates; SEM

Full Text:

PDF

References


Yin X, Zhang B, Wang H, Li X, Feng Q. Enhancement of sintering and mechanical properties of alumina-rich Al2O3-MgO-CaO refractory composite by doping La2O3. Ceram Int. 2024;50(22):47494–500. doi:10.1016/j.ceramint.2024.08.492

Suzuki Y, Nishihashi K. Microstructures and mechanical properties of reactively sintered CaAl12O19/CaAl4O7 porous composites. Ceram Int. 2023;49(18):29427–32. doi:10.1016/j.ceramint.2023.06.004

Jin Y, Wang S, Zhang Y, Gao H, Zhou X, Li D, Yang H, Fang L, Jagadeesha AV, Ubaidullah M, Pandit B, Zhang H. Rare earth ions (Er, Ho and Sm) regulate the optical and photoluminescence properties of CaAl12O19: Performance prediction and anti-counterfeiting application. Ceram Int. 2024;50(9):16096–110. doi:10.1016/j.ceramint.2024.02.090

Kern F, Gadow R. In Situ Platelet Reinforcement of Alumina and Zirconia Matrix Nanocomposites – One Concept, Different Reinforcement Mechanisms. Adv Sci Technol. 2014;87:118–25. doi:10.4028/www.scientific.net/AST.87.118

Podzorova LI, Shvorneva LI, Il’Icheva AA, Alad’Ev NA, Pen’Kova OI. Microstructure and phase composition of ZrO2-CeO2-Al2O3 materials modified with MgO and Y2O3. Inorg Mater. 2013;49(4):376–81. doi:10.1134/S0020168513030163

Bugaeva AY, Nazarova LY, Belyi VA, Ryabkov YI. Phase Transformations of Zirconium Dioxide and Crystal Growth During Heat Treatment of the ZrO2(CeO2,Y2O3)–La0.85Y0.15Al11O18–Al2O3 System. Russ J Gen Chem. 2022;92(8):1488–97. doi:10.1134/S1070363222080175

Podzorova LI, Kutuzova VE, Il’ichyova AA, Pen’kova OI, Sirotinkin VP, Konovalov AA, Antonova OS, Baikin AS. Composites of the Al2O3/Yb-TZP System Modified with Calcium, Strontium, and Barium Cations. Inorg Mater Appl Res. 2022;13(5):1318–23. doi:10.1134/S2075113322050343

Wu C, Zhan L, Liu Q, Liu H, Wang J, Liu W, Yao S, Ma Y. Grain boundary segregation for enhancing the thermal stability of alumina-mullite diphasic fibers by La2O3 addition. J Eur Ceram Soc. 2023;43(15):7012–22. doi:10.1016/j.jeurceramsoc.2023.07.017

Chen X, Sun Y, Chen D, Li J, Li W, Zeng D, Wu D, Zou B, Cao X. A comparative investigation on the corrosion degradation of plasma sprayed YSZ and LnMgAl11O19 (Ln = Nd, Sm, Gd) coatings exposed to the molten V2O5 + Na2SO4 salt mixture at 1100 °C. J Eur Ceram Soc. 2019;39(13):3778–87. doi:10.1016/j.jeurceramsoc.2019.04.055

Sarath Chandra K, Monalisa M, Chowdary CVA, Ghosh G, Sarkar D. Microstructure and mechanical behaviour of SrO doped Al2O3 ceramics. Mater Sci Eng A. 2019;739:186–92. doi:10.1016/j.msea.2018.10.038

Kern F, Gommeringer A. Reinforcement Mechanisms in Yttria-Ceria-Co-Stabilized Zirconia- Alumina-Strontium Hexaaluminate Composite Ceramics 2018;98:93–8. doi:10.4416/JCST2017-00046

Rivero-Antúnez P, Morales-Flórez V, Cumbrera FL, Esquivias L. Rietveld analysis and mechanical properties of in situ formed La-β-Al2O3/Al2O3 composites prepared by sol-gel method. Ceram Int. 2022;48(17):24462–70. doi:10.1016/j.ceramint.2022.05.058

Zhang F, Chevalier J, Olagnon C, Meerbeek B Van, Vleugels J. Slow crack growth and hydrothermal aging stability of an alumina-toughened zirconia composite made from La2O3-doped 2Y-TZP. J Eur Ceram Soc. 2017;37(4):1865–71. doi:10.1016/J.JEURCERAMSOC.2016.11.003

Guo R, Guo D, Chen Y, Yang Z, Yuan Q. In situ formation of LaAl11O18 rodlike particles in ZTA ceramics and effect on the mechanical properties. Ceram Int. 2002;28(7):699–704. doi:10.1016/S0272-8842(02)00031-7

Sktani ZDI, Rejab NA, Ahmad ZA. Tougher and harder zirconia toughened alumina (ZTA) composites through in situ microstructural formation of LaMgAl11O19. Int J Refract Met Hard Mater. 2019;79:60–8. doi:10.1016/J.IJRMHM.2018.11.009

Li Q, Chen K, Ng T, Yang Y, Luo H, Zhang C, Huang Y, Jian Y, Zhao K, Wang X. Development and characterization of Al2O3/SrAl12O19 reinforced zirconia with high fracture toughness and low-temperature degradation-resistant for dental applications. J Mater Res Technol. 2024;30:6877–88. doi:10.1016/j.jmrt.2024.05.051

Shi S, Cho S, Goto T, Sekino T. Role of CeAl11O18 in reinforcing Al2O3 /Ti composites by adding CeO2. Int J Appl Ceram Technol. 2021;18(1):170–81. doi:10.1111/ijac.13629

Ismail H, Mohamad H. Effects of CaCO3 additive on the phase, physical, mechanical, and microstructural properties of zirconia-toughened alumina-CeO2-Nb2O5 ceramics. Ceram Int. 2023. doi:10.1016/j.ceramint.2023.09.015

Seyidoglu T. Investigation and production of high purity lanthanum and barium hexaaluminate ceramic powders. Open Ceram. 2023;16:100491. doi:10.1016/j.oceram.2023.100491.

Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res. 2023;62(6):2353–86. doi:10.1021/acs.iecr.2c03007

Torrez-Herrera JJ, Korili SA, Gil A. Progress in the synthesis and applications of hexaaluminate-based catalysts. Catal Rev. 2022;64(3):592–630. doi:10.1080/01614940.2020.1831756

Tang H, Fang M, Tang C, Huang Z, Liu H, Zhu H, Liu Y, Wu X. Effect of LaMgAl11O19 addition and temperature on the mechanical properties of Al2O3-based ceramics. Mater Sci Eng A. 2016;655:160–7. doi:10.1016/J.MSEA.2015.12.097

Xu X, Xie G, Wu J, Wei P, Chen Z, Ma S. Preparation and thermal shock resistance investigation of ZTA-La2O3 composite ceramics for porous medium combustion materials. Ceram Int. 2023;49(11):18645–53. doi:10.1016/j.ceramint.2023.02.241

Naga SM, Hassan AM, El-Maghraby HF, Awaad M, Elsayed H. In-situ sintering reaction of Al2O3–LaAl11O18–ZrO2 composite. Int J Refract Met Hard Mater. 2016;54:230–6. doi:10.1016/j.ijrmhm.2015.07.026

Cherkasova N, Veselov S, Bataev A, Kuzmin R, Stukacheva N. Structure and mechanical properties of ceramic materials based on alumina and zirconia with strontium hexaaluminate additives. Mater Chem Phys. 2021;259:123938. doi:10.1016/j.matchemphys.2020.123938

Doebelin N, Kleeberg R. Profex : a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr. 2015;48(5):1573–80. doi:10.1107/S1600576715014685

N. Roduit, JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.3.4, Software available for free download at https://jmicrovision.github.io/.

Sktani ZDI, Rejab NA, Ratnam MM, Ahmad ZA. Fabrication of tougher ZTA ceramics with sustainable high hardness through (RSM) optimisation. Int J Refract Met Hard Mater. 2018;74:78–86. doi:10.1016/j.ijrmhm.2018.03.006

Niihara K, Morena R, Hasselman DPH. Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1(1):13–6. doi:10.1007/BF00724706

Cherkasova NY, Antropova KA, Kuchumova ID, Fedorenko EA, Kim EY, Kiseleva IY. Preparation and Research of Composite Materials of the Al2O3–ZrO2–La2O3 System. Refract Ind Ceram. 2023;64(1):63–6. doi:10.1007/s11148-023-00805-1

Rani DA, Yoshizawa Y, Hirao K, Yamauchi Y. Effect of Rare-Earth Dopants on Mechanical Properties of Alumina. J Am Ceram Soc. 2004;87(2):289–92. doi:10.1111/j.1551-2916.2004.00289.x

Gülgün MA, Voytovych R, Maclaren I, Rühle M, Cannon RM. Cation segregation in an oxide ceramic with low solubility: Yttrium doped α-alumina. Interface Sci. 2002;10(1):99–110. doi:10.1023/A:1015268232315

Naga SM, Elshaer M, Awaad M, Amer AA. Strontium hexaaluminate/ZTA composites: Preparation and characterization. Mater Chem Phys. 2019;232:23–7. doi:10.1016/j.matchemphys.2019.04.055

Negahdari Z, Willert-Porada M, Pfeiffer C. Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics. Mater Sci Eng A. 2010;527(12):3005–9. doi:10.1016/j.msea.2010.01.050

Cherkasova N, Antropova K, Kuzmin R, Emurlaev K, Kuchumova I, Burkhinova N, Zobova Y. Features of calcium hexaaluminate formation in alumina-zirconia ceramics. Chim Techno Acta. 2023;10(3). doi:10.15826/chimtech.2023.10.3.17

Aziz HS, Wan C, Xing Y, Sajid M, Shahid M, Pan W. Low radiative heat transfer realized by 8YSZ/LaAl11O18 composites for high-temperature applications. J Mater Sci. 2022;57(40):18754–69. doi:10.1007/s10853-022-07840-2

Altay A, Gülgün MA. Microstructural Evolution of Calcium-Doped α-Alumina. J Am Ceram Soc. 2003;86(4):623–9. doi:10.1111/j.1151-2916.2003.tb03349.x

Sktani ZDI, Rejab NA, Rosli AFZ, Arab A, Ahmad ZA. Effects of La2O3 addition on microstructure development and physical properties of harder ZTA-CeO2 composites with sustainable high fracture toughness. J Rare Earths. 2020; doi:10.1016/j.jre.2020.06.005

Cherkasova N, Kuzmin R, Veselov S, Antropova K, Ruktuev A, Ogneva T, Tyurin A, Kuchumova I, Khabirov R. Influence of strontium hexaaluminate percentage on the structure and properties of alumina-zirconia ceramics. Mater Chem Phys. 2022;288:126424. doi:10.1016/j.matchemphys.2022.126424

Huang X, Cui J, Guan K, Rao P. Influence of La2O3 addition on microstructure and mechanical properties of alumina-dispersed zirconia. J Aust Ceram Soc. 2021;57(5):1407–14. doi:10.1007/s41779-021-00615-z

Wu H, Liu W, Lin L, Huang Z, Wei S, Wu S, Sun Z, An D, Xie Z. The rising crack resistance curve behavior and mechanism of La2O3 doped zirconia toughened alumina composites prepared via vat photopolymerization based 3D printing. Mater Chem Phys. 2022;285:126090. doi:10.1016/j.matchemphys.2022.126090




DOI: https://doi.org/10.15826/chimtech.2025.12.1.03

Copyright (c) 2024 Nina Cherkasova, Kristina Antropova, Aleksandr Legkodymov, Igor Nasennik, Georgiy Krivosheev, Urusveda Popova, Maria Zhulikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International