Impact of calcium and copper co-doping on the oxygen transport of layered nickelates: a case study of Pr1.6Ca0.4Ni1–yCuyO4+δ and a comparative analysis
Abstract
Keywords
Full Text:
PDFReferences
Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A. 2021;9(1):154–95. doi:10.1039/D0TA08132A
Chun O, Jamshaid F, Khan MZ, Gohar O, Hussain I, Zhang Y, Zheng K, Saleem M, Motola M, Hanif MB. Advances in low-temperature solid oxide fuel cells: An explanatory review. J Power Sources. 2024;610:234719. doi:10.1016/j.jpowsour.2024.234719
Baratov S, Filonova E, Ivanova A, Hanif MB, Irshad M, Khan MZ, Motola M, Rauf S, Medvedev D. Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews. J Energy Chem 2024;94:302–31. doi:10.1016/j.jechem.2024.02.047
Yatoo MA, Skinner SJ. Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review. Mater Today Proc. 2022;56(6):3747–54. doi:10.1016/j.matpr.2021.12.537
Tarutin AP, Filonova EA, Ricote S, Medvedev DA, Shao Z. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide. Sustain Energy Technol Assessments. 2023;57:103185. doi:10.1016/j.seta.2023.103185
Chroneos A, Goulatis IL, Solovjov A, Vovk RV. The evolution of solid oxide fuel cell materials. Appl Sci. 2023;14(1):69. doi:10.3390/app14010069
Morales-Zapata MA, Larrea A, Laguna-Bercero MA. Lanthanide nickelates for their application on solid oxide cells. Electrochim Acta. 2023;444:141970. doi:10.1016/j.electacta.2023.141970
Pikalova EYu, Guseva EM, Filonova EA. Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid-oxide electrochemical cells. EM&T. 2023;2(4):20232025. doi:10.15826/elmattech.2023.2.025
Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: A short review. Renew Sustain Energy Rev. 2021;149:111322. doi:10.1016/j.rser.2021.111322
Danilov N, Lyagaeva J, Vdovin G, Pikalova E, Medvedev D. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode. Energy Convers Manage. 2018;172:129–37. doi:10.1016/j.enconman.2018.07.014
Li W, Guan B, Ma L, Hu S, Zhang N, Liu X. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell. J Mater Chem A. 2018;6(37):18057–66. doi:10.1039/C8TA04018D
Tarutin AP, Gilev AR, Baratov SA, Vdovin GK, Medvedev DA. Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. Part 3: Electrochemical applications. Int J Hydrog Energy. 2024;60:261–71. doi:10.1016/j.ijhydene.2024.02.173
Wolf SE, Winterhalder FE, Vibhu V, (Bert) de Haart LGJ, Guillon O, Eichel R-A, Menzler NH. Solid oxide electrolysis cells – current material development and industrial application. J Mater Chem A. 2023;11(34):17977–8028. doi:10.1039/D3TA02161K
Sadykov V, Pikalova E, Sadovskaya E, Shlyakhtina A, Filonova E, Eremeev N. Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility. Membranes. 2023;13(8):698. doi:10.3390/membranes13080698
Sadykov V, Eremeev N, Sadovskaya E, Bespalko Yu, Simonov M, Arapova M, Smal E. Nanomaterials with oxygen mobility for catalysts of biofuels transformation into syngas, SOFC and oxygen/hydrogen separation membranes: Design and performance. Catal Today. 2023;423:113936. doi:10.1016/j.cattod.2022.10.018
Qu L, Papaioannou EI. Development of mixed ionic and electronic conducting materials for gas separation membranes: A critical overview. Chem Eng J. 2024;496:153791. doi:10.1016/j.cej.2024.153791
Zhao Z, Chen G, Escobar Cano G, Kißling PA, Stölting O, Breidenstein B, Polarz S, Bigall NC, Weidenkaff A, Feldhoff A. Multiplying oxygen permeability of a Ruddlesden-Popper oxide by orientation control via magnets. Angew Chem Int Ed. 2024;63(8):e202312473. doi:10.1002/anie.202312473
Escobar Cano G, Zhao Z, Riebesehl F, Stölting O, Breidenstein B, Feldhoff A. Towards the development of textured polycrystalline La2NiO4+δ membranes and their oxygen-transporting properties. J Solid State Electrochem. 2024. [Cited 2024] doi:10.1007/s10008-024-05924-4
Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Belyaev VD, Tsvinkinberg TA, Pikalova EYu. Oxide ionic transport features in Gd-doped La nickelates. Solid State Ionics. 2020;357:115462. doi:10.1016/j.ssi.2020.115462
Georgiadis AG, Charisiou ND, Goula MA. A mini-review on lanthanum–nickel-based perovskite-derived catalysts for hydrogen production via the dry reforming of methane (DRM). Catalysts. 2023;13(10):1357. doi:10.3390/catal13101357
Du H, Luo H, Jiang M, Yan X, Jiang F, Chen H. A review of activating lattice oxygen of metal oxides for catalytic reactions: Reaction mechanisms, modulation strategies of activity and their practical applications. Appl Catal A Gen. 2023;664:119348. doi:10.1016/j.apcata.2023.119348
Forslund RP, Alexander CT, Abakumov AM, Johnston KP, Stevenson KJ. Enhanced electrocatalytic activities by substitutional tuning of nickel-based Ruddlesden–Popper catalysts for the oxidation of urea and small alcohols. ACS Catal. 2019;9(3):2664–73. doi:10.1021/acscatal.8b04103
Park S, Kim Y, Han H, Chung YS, Yoon W, Choi J, Kim WB. In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO. Appl Catal B Environ. 2019;248:147–56. doi:10.1016/j.apcatb.2019.02.013
Lee D, Lee H. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials. 2017;10(4):368. doi:10.3390/ma10040368
Xu S, Jacobs R, Morgan D. Factors controlling oxygen interstitial diffusion in the Ruddlesden–Popper oxide La2–xSrxNiO4+δ. Chem Mater. 2018;30(20):7166–77. doi:10.1021/acs.chemmater.8b03146
Yang S, Liu G, Lee Y-L, Bassat J-M, Gamon J, Villesuzanne A, Pietras J, Zhou X-D, Zhong Y. A systematic ab initio study of vacancy formation energy, diffusivity, and ionic conductivity of Ln2NiO4+δ (Ln=La, Nd, Pr). J Power Sources. 2023;576:233200. doi:10.1016/j.jpowsour.2023.233200
Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner JA. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci. 2011;4(8):2774–89. doi:10.1039/c0ee00717j
Boehm E, Bassat J, Dordor P, Mauvy F, Grenier J-C, Stevens Ph. Oxygen diffusion and transport properties in non-stoichiometric Ln2xNiO4+δ oxides. Solid State Ionics. 2005;176(37–38):2717–25. doi:10.1016/j.ssi.2005.06.033
Pikalova EYu, Kolchugin AA, Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Bogdanovich NM. Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium. Int J Hydrog Energy. 2018;43(36):17373–86. doi:10.1016/j.ijhydene.2018.07.115
Nirala G, Yadav D, Upadhyay S. Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. J Adv Ceram. 2020;9(2):129–48. doi:10.1007/s40145-020-0365-x
Kol’chugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, Filonova EA. Electrochemical properties of doped lantanum–nickelate-based electrodes. Russ J Electrochem. 2017;53(8):826–33. doi:10.1134/S1023193517080110
Wu X, Gu C, Cao J, Miao L, Fu C, Liu W. Investigations on electrochemical performance of La2NiO4+δ cathode material doped at A site for solid oxide fuel cells. Mater Res Express. 2020;7(6):065507. doi:10.1088/2053-1591/ab9c60
Lenka RK, Patro PK, Patel V, Muhmood L, Mahata T. Comparative investigation on the functional properties of alkaline earth metal (Ca, Ba, Sr) doped Nd2NiO4+δ oxygen electrode material for SOFC applications. J Alloys Compd. 2021;860:158490. doi:10.1016/j.jallcom.2020.158490
Skinner SJ, Kilner JA. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics. 2000;135(1–4):709–12. doi:10.1016/S0167-2738(00)00388-X
Sadykov VA, Sadovskaya EM, Pikalova EYu, Kolchugin AA, Filonova EA, Pikalov SM, Eremeev NF, Ishchenko AV, Lukashevich AI, Bassat JM. Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties. Ionics. 2018;24(4):1181–93. doi:10.1007/s11581-017-2279-3
Zakharchuk K, Kovalevsky A, Yaremchenko A. Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ nickelates as potential electrocatalysts for solid oxide cells. Materials. 2023;16(4):1755. doi:10.3390/ma16041755
Li Y, Chen G, Chen H-C, Fei L, Xu L, Liu T, Dai J, Huang H, Zhou W, Shao Z. Tailoring the surface cation configuration of Ruddlesden–Popper perovskites for controllable water oxidation performance. Energy Environ Sci. 2023;16(8):3331–8. doi:10.1039/D3EE00380A
Zheng Y, Jiang H, Wang S, Qian B, Li Q, Ge L, Chen H. Mn-doped Ruddlesden-Popper oxide La1.5Sr0.5NiO4+δ as a novel air electrode material for solid oxide electrolysis cells. Ceram Int. 2021;47(1):1208–17. doi:10.1016/j.ceramint.2020.08.239
Hyodo J, Tominaga K, Ju Y-W, Ida S, Ishihara T. Electrical conductivity and oxygen diffusivity in Cu- and Ga-doped Pr2NiO4. Solid State Ionics. 2014;256:5–10. doi:10.1016/j.ssi.2013.12.036
Filonova E, Gilev A, Maksimchuk T, Pikalova N, Zakharchuk K, Pikalov S, Yaremchenko A, Pikalova E. Development of La1.7Ca0.3Ni1−yCuyO4+δ materials for oxygen permeation membranes and cathodes for intermediate-temperature solid oxide fuel cells. Membranes. 2022;12(12):1222. doi:10.3390/membranes12121222
Gilev AR, Kiselev EA, Sukhanov KS, Korona DV, Cherepanov VA. Evaluation of La2-x(Ca/Sr)xNi1-yFeyO4+δ (x = 0.5, 0.6; y = 0.4, 0.5) as cathodes for proton-conducting SOFC based on lanthanum tungstate. Electrochim Acta. 2022;421:140479. doi:10.1016/j.electacta.2022.140479
Wang Z, Miao X, Zhu X, Guo S, Han D, Ye X, Wen Z. Cu, Zn Co-doped ruddlesden-popper La1·2Sr0·8NiO4+δ oxides as high-performance air electrodes of medium-temperature protonic ceramic electrolysis cells. J Power Sources. 2024;597:234141. doi:10.1016/j.jpowsour.2024.234141
Solís C, Navarrete L, Serra JM. Study of Pr and Pr and Co doped La2NiO4+δ as cathodes for La5.5WO11.25−δ based protonic conducting fuel cells. J Power Sources. 2013;240:691–7. doi:10.1016/j.jpowsour.2013.05.055
Sadykov VA, Sadovskaya EM, Eremeev NF, Maksimchuk TYu, Pikalov SM, Filonova EA, Pikalova NS, Gilev AR, Pikalova EYu. Structure, oxygen mobility, and electrochemical characteristics of La1.7Ca0.3Ni1‒xCuxO4+δ materials. Russ J Electrochem. 2023;59(1):37–48. doi:10.1134/S1023193523010068
Boehm E, Bassat J-M, Steil MC, Dordor P, Mauvy F, Grenier J-C. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003;5(7):973–81. doi:10.1016/S1293-2558(03)00091-8
Yashima M, Yamada H, Nuansaeng S, Ishihara T. Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: Design concept of interstitial ion conductors through the higher-valence d10 dopant and Jahn–Teller effect. Chem Mater. 2012;24(21):4100–13. doi:10.1021/cm3021287
Maksimchuk T, Filonova E, Mishchenko D, Eremeev N, Sadovskaya E, Bobrikov I, Fetisov A, Pikalova N, Kolchugin A, Shmakov A, Sadykov V, Pikalova E. High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials. Appl Sci. 2022;12(8):3747. doi:10.3390/app12083747
Kharton VV, Viskup AP, Kovalevsky AV, Naumovich NM, Marques FMB. Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics. 2001;143(3–4):337–53. doi:10.1016/S0167-2738(01)00876-1
Gilev AR, Kiselev EA, Zakharov DM, Cherepanov VA. Effect of calcium and copper/iron co-doping on defect-induced properties of La2NiO4-based materials. J Alloys Compd. 2018;753:491–501. doi:10.1016/j.jallcom.2018.04.178
Tarutin AP, Lyagaeva YG, Vylkov AI, Gorshkov MYu, Vdovin GK, Medvedev DA. Performance of Pr2(Ni,Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces. J Mater Sci Technol. 2021;93:157–68. doi:10.1016/j.jmst.2021.03.056
Tarutin AP, Lyagaeva JG, Farlenkov AS, Vylkov AI, Medvedev DA. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceram Int. 2019;45(13):16105–12. doi:10.1016/j.ceramint.2019.05.127
Zhang L, Yao F, Meng J, Zhang W, Wang H, Liu X, Meng H, Zhang H. Oxygen migration and proton diffusivity in transition-metal (Mn, Fe, Co, and Cu) doped Ruddlesden–Popper oxides. J Mater Chem A. 2019;7(31):18558–67. doi:10.1039/C9TA05893A
Yashima M, Sirikanda N, Ishihara T. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc. 2010;132(7):2385–92. doi:10.1021/ja909820h
Khoshkalam M, Tripković Ð, Tong X, Faghihi-Sani MA, Chen M, Hendriksen PV. Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-δ via Pr2Ni1-xCuxO4+δ surface decoration. J Power Sources. 2020;457:228035. doi:10.1016/j.jpowsour.2020.228035
Miyoshi S, Furuno T, Sangoanruang O, Matsumoto H, Ishihara T. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides. J Electrochem Soc. 2007;154(1):B57–62. doi:10.1149/1.2387103
Filonova EA, Pikalova EYu, Maksimchuk TYu, Vylkov AI, Pikalov SM, Maignan A. Crystal structure and functional properties of Nd1.6Ca0.4Ni1-yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy. 2021;46(32):17037–50. doi:10.1016/j.ijhydene.2020.10.243
Pikalova E, Zhulanova T, Ivanova A, Tarutin A, Fetisov A, Filonova E. Optimized Pr1.6Ca0.4Ni1−yCuyO4+δ phases as promising electrode materials for CeO2- and BaCe(Zr)O3-based electrochemical cells. Ceram Int. 2024;50(20C):40476–91. doi:10.1016/j.ceramint.2024.06.048
Zhulanova T, Filonova E, Ivanova A, Russkikh O, Pikalova E. Control physicochemical and electrochemical properties of Pr1.6Cа0.4Ni0.6Cu0.4O4+δ as a prospective cathode material for solid oxide cells through the synthesis process. Solid State Sci. 2024;156:107671. doi:10.1016/j.solidstatesciences.2024.107671
Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev. 2004;104(10):4791–844. doi:10.1021/cr020724o
Rosten R, Koski M, Koppana E. A guide to the calculation of theoretical densities of crystal structures for solid oxide fuel cells. J Undergrad Mater Res. 2006;2(1):38–41. doi:10.21061/jumr.v2i0.0605
Aguadero A, Alonso J, Escudero M, Daza L. Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics. 2008;179(11–12):393–400. doi:10.1016/j.ssi.2008.01.099
Sakai M, Wang C, Okiba T, Soga H, Niwa E, Hashimoto T. Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures. J Therm Anal Calorim. 2019;135(5):2765–74. doi:10.1007/s10973-018-7621-0
Chen B-H. Introduction of a tolerance factor for the Nd2CuO4(T′)-type structure. J Solid State Chem 1996;125(1):63–6. doi:10.1006/jssc.1996.0265
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32:751–67. doi:10.1107/S0567739476001551
Pikalova E, Kolchugin A, Filonova E, Bogdanovich N, Pikalov S, Ananyev M, Molchanova N, Farlenkov A. Validation of calcium-doped neodymium nickelates as SOFC air electrode materials. Solid State Ionics 2018;319:130–40. doi:10.1016/j.ssi.2018.02.008
Choisnet J. Structure and bonding anisotropy in intergrowth oxides: A clue to the manifestation of bidimensionality in T-, T′-, and T*-type structures. J Solid State Chem. 1999;147(1):379–89. doi:10.1006/jssc.1999.8381
Nakamura T, Yashiro K, Sato K, Mizusaki J. Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ. Solid State Ionics. 2009;180(4–5):368–76. doi:10.1016/j.ssi.2009.01.013
Sadykov VA, Pikalova EYu, Kolchugin AA, Filonova EA, Sadovskaya EM, Eremeev NF, Ishchenko AV, Fetisov AV, Pikalov SM. Oxygen transport properties of Ca-doped Pr2NiO4. Solid State Ionics. 2018;317:234–43. doi:10.1016/j.ssi.2018.01.035
Kanai H, Mizusaki J, Tagawa H, Hoshiyama S, Hirano K, Fujita K, Tezuka M, Hashimoto T. Defect chemistry of La2−xSrxCuO4−δ: Oxygen nonstoichiometry and thermodynamic stability. J Solid State Chem. 1997;131(1):150–9. doi:10.1006/jssc.1997.7377
Naumovich EN, Patrakeev MV, Kharton VV, Yaremchenko AA, Logvinovich DI, Marques FMB. Oxygen nonstoichiometry in La2Ni(M)O4+δ (M = Cu, Co) under oxidizing conditions. Solid State Sci. 2005;7(11):1353–62. doi:10.1016/j.solidstatesciences.2005.08.005
Wang C, Soga H, Okiba T, Niwa E, Hashimoto T. Construction of structural phase diagram of Nd2Ni1-xCuxO4+δ and effect of crystal structure and phase transition on electrical conduction behavior. Mater Res Bull. 2019;111:61–9. doi:10.1016/j.materresbull.2018.10.036
Hashimoto T, Yugi T, Sasaki M, Wang C, Sakai M, Soga H, Okiba T. Dependence of crystal structure, morphology and electrical conductivity of Pr2Ni1-XCuxO4+δ and PrLaNi1-XCuxO4+δ ceramics on Cu content. ECS Trans. 2019;91(1):1445–52. doi:10.1149/09101.1445ecst
Pikalova E, Sadykov V, Sadovskaya E, Eremeev N, Kolchugin A, Shmakov A, Vinokurov Z, Mishchenko D, Filonova E, Belyaev V. Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance. Crystals. 2021;11(3):297. doi:10.3390/cryst11030297
Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, Sadovskaya EM, Pikalov SM, Bogdanovich NM, Lyagaeva JG, Kolchugin AA, Vedmid’ LB, Ishchenko AV, Goncharov VB. Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4. Solid State Ionics. 2019;335:53–60. doi:10.1016/j.ssi.2019.02.012
Bamburov A, Naumovich Ye, Khalyavin DD, Yaremchenko AA. Intolerance of the Ruddlesden–Popper La2NiO4+δ structure to A-site cation deficiency. Chem Mater. 2023;35(19):8145–57. doi:10.1021/acs.chemmater.3c01594
Wang Y, Chen J, Liu K, Wang M, Song D, Wong K.Computational screening of La2NiO4+δ cathodes with Ni site doping for solid oxide fuel cells. Inorg Chem. 2023;62(19):7574–83. doi:10.1021/acs.inorgchem.3c01044
77. Sadykov VA, Sadovskaya EM, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YuN, Pavlova SN, Fedorova YuE, Pikalova EYu, Shlyakhtina AV. Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (Review). Russ J Electrochem. 2019;55(8):701–18. doi:10.1134/S1023193519080147
Gu X-K, Nikolla E. Design of Ruddlesden–Popper oxides with optimal surface oxygen exchange properties for oxygen reduction and evolution. ACS Catal. 2017;7(9):5912–20. doi:10.1021/acscatal.7b01483
Tomkiewicz AC, Tamimi MA, Huq A, McIntosh SIs the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases? Faraday Discuss. 2015;182:13–127. doi:10.1039/C5FD00014A
Huan Y, Chen S, Zeng R, Wei T, Dong D, Hu X, Huang Y. Intrinsic effects of Ruddlesden‐Popper‐based bifunctional catalysts for high‐temperature oxygen reduction and evolution. Adv Energy Mater. 2019;9:1901573. doi:10.1002/aenm.201901573
Xue J, Liao Q, Chen W, Bouwmeester HJM, Wang H, Feldhoff A.A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. J Mater Chem A. 2015;3(37):19107–14. doi:10.1039/C5TA02514A
Sadykov VA, Pikalova EYu, Vinokurov ZS, Shmakov AN, Eremeev NF, Sadovskaya EM, Lyagaeva JG, Medvedev DA, Belyaev VD. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics 2019;333:30–7. doi:10.1016/j.ssi.2019.01.014
Pikalova E, Kolchugin A, Bogdanovich N, Medvedev D, Lyagaeva J, Vedmid’ L, Ananyev M, Plaksin S, Farlenkov A. Suitability of Pr2–xCaxNiO4+δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes. Int J Hydrog Energy. 2020;45(25):13612–24. doi:10.1016/j.ijhydene.2018.06.023
DOI: https://doi.org/10.15826/chimtech.2024.11.4.11
Copyright (c) 2024 Vladislav Sadykov, Nikita Eremeev, Ekaterina Sadovskaya, Tatiana Zhulanova, Sergey Pikalov, Yulia Fedorova, Elena Pikalova
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International