Synthesis and evaluation of MMT/TiO2 nanotube photocatalysts for enhanced degradation of organic dyes in wastewater
Abstract
Keywords
Full Text:
PDFReferences
Jianli W, Qingjia S, Biyang T, Cheng G. Photodegradation of dye wastewater by Ti-doped Bi2O3/montmorillonite composites. Desalinat Water Treatment. 2024;319:100541. doi:10.1016/j.dwt.2024.100541
Licai C, Yunliang Z, Tianxing C, Haoyu , Tingting Z, Hongqiang L, Qing A, Shaoxian S. Correlation of aspect ratio of montmorillonite nanosheets with the colloidal properties in aqueous solutions. Res Phys. 2019;15:102526. doi:10.1016/j.rinp.2019.102526
Alastair TMM, Sreejith K, Susan AB. Structural features of thermally or mechanochemically treated montmorillonite clays as precursors for alkali-activated cements production. Cement Concrete Res. 2024;181:107546. doi:10.1016/j.cemconres.2024.107546
Nahid Y, Mahdi M, Reza D. Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review. Res Chem. 2022;4:100549. doi:10.1016/j.rechem.2022.100549
Nasim U, Zarshad A, Amir, Sada K, Bushra A, Asma N, Sher BK. Preparation and dye adsorption properties of activated carbon/clay/sodium alginate composite hydrogel membranes. RSC Adv. 2024;14(1,2):211–221. doi:10.1039/d3ra07554k
Tarmizi T, Andika M, Nurul M, Syamsuddin MW, Patimah MSBNS, Neza RP, Aldes L, Yudha GW. Synthesis and characterization of montmorillonite – Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorg Chem Commun. 2023;147:110231. doi:10.1016/j.inoche.2022.110231
Biyang T, Shengqing W, Haichun X, Jianli W, Yuying M. Optimization of preparation conditions of Bi-doped TiO2/montmorillonite composites and its photodegradation of Rhodamine B. Desalinat Water Treat. 2024;318:100328. doi:10.1016/j.dwt.2024.100328.
Zahra S, Zahra H, Parisa M, Aydin H. Preparation of novel and low-cost chitosan modified with montmorillonite/ZnO hydrogel nanocomposite for adsorption of ciprofloxacin from water. J Water Proc Engin. 2024;63:105449. doi:10.1016/j.jwpe.2024.105449
Soumya RM, Ahmaruzzaman M. CuO and CuO-based nanocomposites: Synthesis and applications in environment and energy. Sustainable Mater Technol. 2022;33:E00463. doi:10.1016/j.susmat.2022.e00463
Elika SG, Zahra GJ, Amir A, Marzieh G, Azin K, Anita PK, Mitra M, Monireh AH, Jahan BG, Xuanhua L. TiO2 nanotube/ZnIn2S4 nanoflower composite with step-scheme heterojunction for efficient photocatalytic H2O2 production and organic dye degradation. J Environm Chem Engin. 2023;11(3):110160. doi:10.1016/j.jece.2023.110160
Qinyao W, Yuhua Z, Zieng Z, Shengwen L, Yadan D, Xiang W, Qilu Y, Kesheng W. Hydrothermal preparation of Sn3O4/TiO2 nanotube arrays as effective photocatalysts for boosting photocatalytic dye degradation and hydrogen production. Ceram Int. 2023;49(4):5977–5985. doi:10.1016/j.ceramint.2022.11.113
Yu-Long X, Li-Fang G, Cuo-Ji B. Fabrication of BiOI Nanoflowers Decorated TiO2 Nanotube Arrays on Porous Titanium with Enhanced Photocatalytic Performance for Rhodamine B Degradation. Int J Electrochem Sci. 2022;17(2):22022. doi:10.20964/2022.02.04.
Tam TBD, Loan TTH, Do TN, Nhien HL, Quoc KL, Truong HN, Chi-Nhan HT. Vietnamese Montmorillonite Supported ZnO: Preparation, Characterization, and Photocatalytic Enhancement in Degradation of Rhodamine B. Kinetics Catalysis. 2023;64(4):390–402. doi:10.1134/S002315842304002X
Tam TBD, Loan TTH, Nhien HL, Do TN, Truong HN, Chi-Nhan HT. Characterization and the Effect of Different Parameters on Photocatalytic Activity of Montmorillonite/TiO2 Nanocomposite under UVC Irradiation. Periodica Polytechnica Chem Engin. 2024;68(1):35–49. doi:10.3311/PPch.22065
Mehrnaz G, Narges EF, Mehdi G, Mohammad TY. Bimetal Cu/Ni-BTC@SiO2 metal-organic framework as high-performance photocatalyst for degradation of azo dyes under visible light irradiation. Environm Res. 2024;256:119229. doi:10.1016/j.envres.2024.119229
Elham AA, Poonam D, Bushra F, Sumbul H, Sharf IS, Seungdae O. Cu-Zn coupled heterojunction photocatalyst for dye degradation: Performance evaluation based on the quantum yield and figure of merit. J Saudi Chem Soc. 2024;28(3):101858. doi:10.1016/j.jscs.2024.101858
Adhitiyan T, Dhanaraj K, Gubendhiran S, Suresh G, Thenpandiyan E, Prasath M. Green Synthesized Silver And Zinc Doped Hydroxyapatite Photocatalysts To Remove Methylene Blue And Rhodamine B Dyes From Industrial Wastewater. Chem Phys Impact. 2024;100695. doi:10.1016/j.chphi.2024.100695
Bayahia H. Schinus molle extract mediated green synthesis of iron niobate photocatalyst for the degradation of methyl orange dye under visible light. J Saudi Chem Soc. 2024;28(3):101876. doi:10.1016/j.jscs.2024.101876
Chen H, Chen D, Bai L, Shu K. Hydrothermal Synthesis and Electrochemical Properties of TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries. Int J Electrochem Sci. 2018;13:2118–2125. doi:10.20964/2018.02.75
Zavala MAL, Morales SAL, Ávila-Santos M. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon. 2017;3(11):e00456. doi:10.1016/j.heliyon.2017.e00456
Venkatesha NJ, Prakash BSJ, Bhat YS. The active site accessibility aspect of montmorillonite for ketone yield inester rearrangement. Catal Sci Technol. 2015;5:1629. doi:10.1039/C4CY01356E
Cai W, Zhu X, Kumar R, Zhu Z, Ye J, Zhao J. Catalytic Pyrolysis of Biomass Waste using Montmorillonite-Supported Ultrafine Iron Nanoparticles for Enhanced Bio-Oil Yield and Quality. Green Energy Resources. 2024;100085. doi:10.1016/j.gerr.2024.100085
Wang J, Su Q, Tuo B, Gan C. Photodegradation of dye wastewater by Ti-doped Bi2O3/montmorillonite composites. Desalination Water Treat. 2024;319:100541. doi:10.1016/j.dwt.2024.100541
Makwana D, Castan J, Somani RS, Bajaj HC. Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. Arab J Chem. 2020;13(1):3092-3099. doi:10.1016/j.arabjc.2018.08.017
Shuang S, Ruitao L, Zheng X, Zhengjun Z. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays. Sci Rep. 2016;6:26670. doi:10.1038/srep26670
Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C. Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catalysis Today. 2011;166:18–24. doi:10.1016/j.cattod.2010.03.045
Soumya RM, Vishal G, Kshitij RBS, Shyam SP, Ahmaruzzaman M.Developing In2S3 upon modified MgTiO3 anchored on nitrogen-doped CNT for sustainable sensing and removal of toxic insecticide clothianidin. Environ Res. 2024;259:119435. doi:10.1016/j.envres.2024.119435
Wu Z, Zhao H, Zhou X, Wang Y, Zuo K, Cheng H. Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals. 2022;12(4):477. doi:10.3390/min12040477
Nanjegowda VH, Biligiri KP, Asce KP, Mahimaluru J, Mondal D. Development of Organoclay Suitable for Applications in Recycled Rubber–Based Asphalt Binders: Montmorillonite Tailored with QuaternaryAmmonium Salt. J Mater Civ Eng. 2023;35(1):04022390. doi:10.1061/(ASCE)MT.1943-5533.0004578
El-Deen SS, Hashem AM, Ghany AEA, Indris S, Ehrenberg H, Mauger H, Julien CM. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics. 2018;24:2925–2934. doi:10.1007/s11581-017-2425-y
Challagulla S, Tarafder K, Ganesan R, Roy S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep. 2017;7:8783. doi:10.1038/s41598-017-08599-2
Scrimieri L, Velardi L, Serra A, Manno D, Ferrari F, Cantarella M, Calcagnile L. Enhanced adsorption capacity of porous titanium dioxide nanoparticles synthesized in alkaline sol. Appl Phys A. 2020;126:926. doi:10.1007/s00339-020-04103-2
Soto PC, Salamanca-Neto CAR, Moraes JT, Sartori ER, Bessegato GG, Lopes F, Almeida LC. A novel sensing platform based on self-doped TiO2 nanotubes for methylene blue dye electrochemical monitoring during its electro-Fenton degradation. J Solid State Electrochem. 2020;24:1951–1959. doi:10.1007/s10008-020-04509-1
Muñoz-Iglesias V, Sánchez-García L, Carrizo D, Molina A, Fernández‑Sampedro M, Prieto‑Ballesteros O. Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Sci Rep. 2022;12:5640. doi:10.1038/s41598-022-09684-x
Wang A, Freeman JJ, Jolliff BL. Understanding the Raman spectral features of phyllosilicates. J Raman Spectrosc. 2015;93555151. doi:10.1002/jrs.4680
Shaikh SF, Mane RS, Min BK, Hwang YJ, Ohshim J. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Sci Rep. 2015;6(1):20103. doi:10.1038/srep20103
Ong WL, Ho GW. Enhanced Photocatalytic Performance of TiO2 Hierarchical Spheres Decorated with Ag2S Nanoparticles. Procedia Engin. 2016;141:7–14. doi:10.1016/j.proeng.2015.09.217
Saptarshi R, Soumya RMi, Vishal G, Ankur KG, Ahmaruzzaman M. Anchoring Ni(II) bisacetylacetonate complex into CuS immobilized MOF for enhanced removal of tinidazole and metronidazole. Clean Water. 2024;7:83. doi:10.1038/s41545-024-00375-w
Kite SV, Sathe DJ, Kadam AN, Chavan SS, Garadkar SS. Highly efficient photodegradation of 4 nitrophenol over the nano TiO2 obtained from chemical bath deposition technique. Res Chem Intermediates. 2020;46(2):1255–1282. doi:10.1007/s11164-019-04032-7
Miguel ALZ, Samuel ALM, Manuel AS. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing, and annealing temperature. Heliyon. 2017;3:e00456 . doi:10.1016/j.heliyon.2017.e00456
Arifin SNH, Mohamed RMSR, Al-Gheethi AA, Wei LC, Yashni G, Fitriani N, Naushad M, Albadarin AB. Modified TiO2 nanotubes-zeolite composite photocatalyst: Characteristics, microstructure, and applicability for degrading triclocarban. Chemosphere. 2022;287(3):132278. doi:10.1016/j.chemosphere.2021.132278
Paramasivam, Avhale A, Inayat A, Bösmann A, Schmuki P, Schwieger W. MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. Nanotechnol. 2009;2(22):225607. doi:10.1088/0957-4484/20/22/225607
Saptarshi R, Soumya RM, Ahmaruzzaman M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. J Environ Manag. 2024;366:121802. doi:10.1016/J.JENVMAN.2024.121802
Soumya RM, Vishal G, Ahmaruzzaman M. A critical review on In2S3-based nanomaterial for emerging contaminants elimination through integrated adsorption-degradation technique: Effect of reaction parameters and coexisting species. J Hazardous Mater Lett. 2023;4:100087. doi:10.1016/J.HAZL.2023.100087
Zhang J, Tan H, Deng X, Li M, Jian S, Li G. Preparation of organic montmorillonite supported TiO2 and its application in methylene blue removal. Construction Building Mater. 2022;341:127762. doi:10.1016/j.conbuildmat.2022.127762
Karunadasa KSP, Wijekoon ASK, Manoratne CH. TiO2-kaolinite composite photocatalyst for industrial organic waste decontamination. Next Mater. 2024;3:100065. doi:10.1016/j.nxmate.2023.100065
Zhao S, Xiao H, Chen Y, Qi Y, Yan C, Ma R, Zhao Q, Liu We, Shen Y. Photocatalytic degradation of xanthates under visible light using heterogeneous CuO/TiO2/montmorillonite composites. Green Smart Mining Engin. 2024;1(1):67–75. doi:10.1016/j.gsme.2024.03.003
Özyürek IN, Kıranşan M, Karaca S. Investigation of the removal of sulfamethoxazole drug waste from aqueous solutions under the effect of zinc oxide/montmorillonite nanocomposite by photocatalytic ozonation process. Desalination Water Treatment. 2021;242:144–161. doi:10.5004/dwt.2021.27847
Alahmad W, Hedhili F, Al-Shomar SM, Albaqawi HS, Al-Shammari NA, Abdelrahman S. Modeling Sustainable Photocatalytic Degradation of Acidic Dyes using Jordanian Nano-Kaolin–TiO2 and Solar Energy: Synergetic Mechanistic Insights. Heliyon. 2024;e36978. doi:10.1016/j.heliyon.2024.e36978
El-Dossoki FI, Atwee TM, Hamada AM, El-Bindary AA. Photocatalytic degradation of Remazol Red B and Rhodamine B dyes using TiO2 nanomaterial: estimation of the effective operating parameters. Desalination Water Treatment. 2021;233:319–330. doi:10.5004/dwt.2021.27519
Alireza K, Mohsen S, Aydin H, Mojtaba T, Semra K. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrasonics Sonochem. 2025;22:404–411. doi:10.1016/j.ultsonch.2014.07.002
Kasiri MB, Khataee AR. Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design. Desalination. 2011;270(1–3):151–159. doi:10.1016/j.desal.2010.11.039
Khataee AR, Mirzajani O. UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network. Desalinat. 2010;251:64–69. doi:10.1016/j.desal.2009.09.142
Zeinab AS, Achisa CM, Josphat IM. Effect of TiO2/Fe2O3 nanopowder synthesis method on visible light photocatalytic degradation of reactive blue dye. Heliyon. 2024;10(8):e29648. doi: 10.1016/j.heliyon.2024.e29648
DOI: https://doi.org/10.15826/chimtech.2024.11.4.09
Copyright (c) 2024 Bang Tam Thi Dao, Trung Do Nguyen, Hon Nhien Le, Chi-Nhan Ha-Thuc
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International