Cover Image

Synthesis and evaluation of MMT/TiO2 nanotube photocatalysts for enhanced degradation of organic dyes in wastewater

Bang Tam Thi Dao, Trung Do Nguyen, Hon Nhien Le, Chi-Nhan Ha-Thuc

Abstract


This study aims to synthesize a nanocomposite photocatalyst from naturally sourced clay (montmorillonite, MMT) and titanium dioxide nanotubes (TNTs) to efficiently degrade organic dyes in wastewater under UVC light. The TNTs were synthesized through the hydrothermal method and were randomly attached to both the surface and interlayer spaces of the MMT sheets. Pristine MMT was found to exhibit good adsorption properties, while the TNTs demonstrated strong photocatalytic activity. The combination of these materials in the MMT/TNT nanocomposite resulted in a material that exhibited both adsorption and photocatalytic properties. The dye degradation efficiency of the MMT/TNT nanocomposite reached 95%, which is significantly higher than that of pristine MMT (50%) and TNTs alone (60%). This enhanced performance can be attributed to the synergistic effect between the adsorption capacity of MMT and the photocatalytic activity of TNTs. The study highlights the potential of using naturally sourced materials like MMT in the development of advanced photocatalysts for environmental remediation. The MMT/TNT nanocomposite offers a sustainable and efficient solution for the removal of organic pollutants from wastewater. These findings provide a pathway for further development of high-performance nanocomposites that combine the dual functional properties of adsorption and photocatalysis, contributing to more efficient wastewater treatment technologies.

Keywords


montmorillonite; TiO2 nanotubes; nanocomposite; photocatalyst; degradation; organic dye; decolorization

Full Text:

PDF

References


Jianli W, Qingjia S, Biyang T, Cheng G. Photodegradation of dye wastewater by Ti-doped Bi2O3/montmorillonite composites. Desalinat Water Treatment. 2024;319:100541. doi:10.1016/j.dwt.2024.100541

Licai C, Yunliang Z, Tianxing C, Haoyu , Tingting Z, Hongqiang L, Qing A, Shaoxian S. Correlation of aspect ratio of montmorillonite nanosheets with the colloidal properties in aqueous solutions. Res Phys. 2019;15:102526. doi:10.1016/j.rinp.2019.102526

Alastair TMM, Sreejith K, Susan AB. Structural features of thermally or mechanochemically treated montmorillonite clays as precursors for alkali-activated cements production. Cement Concrete Res. 2024;181:107546. doi:10.1016/j.cemconres.2024.107546

Nahid Y, Mahdi M, Reza D. Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review. Res Chem. 2022;4:100549. doi:10.1016/j.rechem.2022.100549

Nasim U, Zarshad A, Amir, Sada K, Bushra A, Asma N, Sher BK. Preparation and dye adsorption properties of activated carbon/clay/sodium alginate composite hydrogel membranes. RSC Adv. 2024;14(1,2):211–221. doi:10.1039/d3ra07554k

Tarmizi T, Andika M, Nurul M, Syamsuddin MW, Patimah MSBNS, Neza RP, Aldes L, Yudha GW. Synthesis and characterization of montmorillonite – Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorg Chem Commun. 2023;147:110231. doi:10.1016/j.inoche.2022.110231

Biyang T, Shengqing W, Haichun X, Jianli W, Yuying M. Optimization of preparation conditions of Bi-doped TiO2/montmorillonite composites and its photodegradation of Rhodamine B. Desalinat Water Treat. 2024;318:100328. doi:10.1016/j.dwt.2024.100328.

Zahra S, Zahra H, Parisa M, Aydin H. Preparation of novel and low-cost chitosan modified with montmorillonite/ZnO hydrogel nanocomposite for adsorption of ciprofloxacin from water. J Water Proc Engin. 2024;63:105449. doi:10.1016/j.jwpe.2024.105449

Soumya RM, Ahmaruzzaman M. CuO and CuO-based nanocomposites: Synthesis and applications in environment and energy. Sustainable Mater Technol. 2022;33:E00463. doi:10.1016/j.susmat.2022.e00463

Elika SG, Zahra GJ, Amir A, Marzieh G, Azin K, Anita PK, Mitra M, Monireh AH, Jahan BG, Xuanhua L. TiO2 nanotube/ZnIn2S4 nanoflower composite with step-scheme heterojunction for efficient photocatalytic H2O2 production and organic dye degradation. J Environm Chem Engin. 2023;11(3):110160. doi:10.1016/j.jece.2023.110160

Qinyao W, Yuhua Z, Zieng Z, Shengwen L, Yadan D, Xiang W, Qilu Y, Kesheng W. Hydrothermal preparation of Sn3O4/TiO2 nanotube arrays as effective photocatalysts for boosting photocatalytic dye degradation and hydrogen production. Ceram Int. 2023;49(4):5977–5985. doi:10.1016/j.ceramint.2022.11.113

Yu-Long X, Li-Fang G, Cuo-Ji B. Fabrication of BiOI Nanoflowers Decorated TiO2 Nanotube Arrays on Porous Titanium with Enhanced Photocatalytic Performance for Rhodamine B Degradation. Int J Electrochem Sci. 2022;17(2):22022. doi:10.20964/2022.02.04.

Tam TBD, Loan TTH, Do TN, Nhien HL, Quoc KL, Truong HN, Chi-Nhan HT. Vietnamese Montmorillonite Supported ZnO: Preparation, Characterization, and Photocatalytic Enhancement in Degradation of Rhodamine B. Kinetics Catalysis. 2023;64(4):390–402. doi:10.1134/S002315842304002X

Tam TBD, Loan TTH, Nhien HL, Do TN, Truong HN, Chi-Nhan HT. Characterization and the Effect of Different Parameters on Photocatalytic Activity of Montmorillonite/TiO2 Nanocomposite under UVC Irradiation. Periodica Polytechnica Chem Engin. 2024;68(1):35–49. doi:10.3311/PPch.22065

Mehrnaz G, Narges EF, Mehdi G, Mohammad TY. Bimetal Cu/Ni-BTC@SiO2 metal-organic framework as high-performance photocatalyst for degradation of azo dyes under visible light irradiation. Environm Res. 2024;256:119229. doi:10.1016/j.envres.2024.119229

Elham AA, Poonam D, Bushra F, Sumbul H, Sharf IS, Seungdae O. Cu-Zn coupled heterojunction photocatalyst for dye degradation: Performance evaluation based on the quantum yield and figure of merit. J Saudi Chem Soc. 2024;28(3):101858. doi:10.1016/j.jscs.2024.101858

Adhitiyan T, Dhanaraj K, Gubendhiran S, Suresh G, Thenpandiyan E, Prasath M. Green Synthesized Silver And Zinc Doped Hydroxyapatite Photocatalysts To Remove Methylene Blue And Rhodamine B Dyes From Industrial Wastewater. Chem Phys Impact. 2024;100695. doi:10.1016/j.chphi.2024.100695

Bayahia H. Schinus molle extract mediated green synthesis of iron niobate photocatalyst for the degradation of methyl orange dye under visible light. J Saudi Chem Soc. 2024;28(3):101876. doi:10.1016/j.jscs.2024.101876

Chen H, Chen D, Bai L, Shu K. Hydrothermal Synthesis and Electrochemical Properties of TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries. Int J Electrochem Sci. 2018;13:2118–2125. doi:10.20964/2018.02.75

Zavala MAL, Morales SAL, Ávila-Santos M. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon. 2017;3(11):e00456. doi:10.1016/j.heliyon.2017.e00456

Venkatesha NJ, Prakash BSJ, Bhat YS. The active site accessibility aspect of montmorillonite for ketone yield inester rearrangement. Catal Sci Technol. 2015;5:1629. doi:10.1039/C4CY01356E

Cai W, Zhu X, Kumar R, Zhu Z, Ye J, Zhao J. Catalytic Pyrolysis of Biomass Waste using Montmorillonite-Supported Ultrafine Iron Nanoparticles for Enhanced Bio-Oil Yield and Quality. Green Energy Resources. 2024;100085. doi:10.1016/j.gerr.2024.100085

Wang J, Su Q, Tuo B, Gan C. Photodegradation of dye wastewater by Ti-doped Bi2O3/montmorillonite composites. Desalination Water Treat. 2024;319:100541. doi:10.1016/j.dwt.2024.100541

Makwana D, Castan J, Somani RS, Bajaj HC. Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. Arab J Chem. 2020;13(1):3092-3099. doi:10.1016/j.arabjc.2018.08.017

Shuang S, Ruitao L, Zheng X, Zhengjun Z. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays. Sci Rep. 2016;6:26670. doi:10.1038/srep26670

Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C. Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catalysis Today. 2011;166:18–24. doi:10.1016/j.cattod.2010.03.045

Soumya RM, Vishal G, Kshitij RBS, Shyam SP, Ahmaruzzaman M.Developing In2S3 upon modified MgTiO3 anchored on nitrogen-doped CNT for sustainable sensing and removal of toxic insecticide clothianidin. Environ Res. 2024;259:119435. doi:10.1016/j.envres.2024.119435

Wu Z, Zhao H, Zhou X, Wang Y, Zuo K, Cheng H. Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals. 2022;12(4):477. doi:10.3390/min12040477

Nanjegowda VH, Biligiri KP, Asce KP, Mahimaluru J, Mondal D. Development of Organoclay Suitable for Applications in Recycled Rubber–Based Asphalt Binders: Montmorillonite Tailored with QuaternaryAmmonium Salt. J Mater Civ Eng. 2023;35(1):04022390. doi:10.1061/(ASCE)MT.1943-5533.0004578

El-Deen SS, Hashem AM, Ghany AEA, Indris S, Ehrenberg H, Mauger H, Julien CM. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics. 2018;24:2925–2934. doi:10.1007/s11581-017-2425-y

Challagulla S, Tarafder K, Ganesan R, Roy S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep. 2017;7:8783. doi:10.1038/s41598-017-08599-2

Scrimieri L, Velardi L, Serra A, Manno D, Ferrari F, Cantarella M, Calcagnile L. Enhanced adsorption capacity of porous titanium dioxide nanoparticles synthesized in alkaline sol. Appl Phys A. 2020;126:926. doi:10.1007/s00339-020-04103-2

Soto PC, Salamanca-Neto CAR, Moraes JT, Sartori ER, Bessegato GG, Lopes F, Almeida LC. A novel sensing platform based on self-doped TiO2 nanotubes for methylene blue dye electrochemical monitoring during its electro-Fenton degradation. J Solid State Electrochem. 2020;24:1951–1959. doi:10.1007/s10008-020-04509-1

Muñoz-Iglesias V, Sánchez-García L, Carrizo D, Molina A, Fernández‑Sampedro M, Prieto‑Ballesteros O. Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Sci Rep. 2022;12:5640. doi:10.1038/s41598-022-09684-x

Wang A, Freeman JJ, Jolliff BL. Understanding the Raman spectral features of phyllosilicates. J Raman Spectrosc. 2015;93555151. doi:10.1002/jrs.4680

Shaikh SF, Mane RS, Min BK, Hwang YJ, Ohshim J. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Sci Rep. 2015;6(1):20103. doi:10.1038/srep20103

Ong WL, Ho GW. Enhanced Photocatalytic Performance of TiO2 Hierarchical Spheres Decorated with Ag2S Nanoparticles. Procedia Engin. 2016;141:7–14. doi:10.1016/j.proeng.2015.09.217

Saptarshi R, Soumya RMi, Vishal G, Ankur KG, Ahmaruzzaman M. Anchoring Ni(II) bisacetylacetonate complex into CuS immobilized MOF for enhanced removal of tinidazole and metronidazole. Clean Water. 2024;7:83. doi:10.1038/s41545-024-00375-w

Kite SV, Sathe DJ, Kadam AN, Chavan SS, Garadkar SS. Highly efficient photodegradation of 4 nitrophenol over the nano TiO2 obtained from chemical bath deposition technique. Res Chem Intermediates. 2020;46(2):1255–1282. doi:10.1007/s11164-019-04032-7

Miguel ALZ, Samuel ALM, Manuel AS. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing, and annealing temperature. Heliyon. 2017;3:e00456 . doi:10.1016/j.heliyon.2017.e00456

Arifin SNH, Mohamed RMSR, Al-Gheethi AA, Wei LC, Yashni G, Fitriani N, Naushad M, Albadarin AB. Modified TiO2 nanotubes-zeolite composite photocatalyst: Characteristics, microstructure, and applicability for degrading triclocarban. Chemosphere. 2022;287(3):132278. doi:10.1016/j.chemosphere.2021.132278

Paramasivam, Avhale A, Inayat A, Bösmann A, Schmuki P, Schwieger W. MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. Nanotechnol. 2009;2(22):225607. doi:10.1088/0957-4484/20/22/225607

Saptarshi R, Soumya RM, Ahmaruzzaman M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. J Environ Manag. 2024;366:121802. doi:10.1016/J.JENVMAN.2024.121802

Soumya RM, Vishal G, Ahmaruzzaman M. A critical review on In2S3-based nanomaterial for emerging contaminants elimination through integrated adsorption-degradation technique: Effect of reaction parameters and coexisting species. J Hazardous Mater Lett. 2023;4:100087. doi:10.1016/J.HAZL.2023.100087

Zhang J, Tan H, Deng X, Li M, Jian S, Li G. Preparation of organic montmorillonite supported TiO2 and its application in methylene blue removal. Construction Building Mater. 2022;341:127762. doi:10.1016/j.conbuildmat.2022.127762

Karunadasa KSP, Wijekoon ASK, Manoratne CH. TiO2-kaolinite composite photocatalyst for industrial organic waste decontamination. Next Mater. 2024;3:100065. doi:10.1016/j.nxmate.2023.100065

Zhao S, Xiao H, Chen Y, Qi Y, Yan C, Ma R, Zhao Q, Liu We, Shen Y. Photocatalytic degradation of xanthates under visible light using heterogeneous CuO/TiO2/montmorillonite composites. Green Smart Mining Engin. 2024;1(1):67–75. doi:10.1016/j.gsme.2024.03.003

Özyürek IN, Kıranşan M, Karaca S. Investigation of the removal of sulfamethoxazole drug waste from aqueous solutions under the effect of zinc oxide/montmorillonite nanocomposite by photocatalytic ozonation process. Desalination Water Treatment. 2021;242:144–161. doi:10.5004/dwt.2021.27847

Alahmad W, Hedhili F, Al-Shomar SM, Albaqawi HS, Al-Shammari NA, Abdelrahman S. Modeling Sustainable Photocatalytic Degradation of Acidic Dyes using Jordanian Nano-Kaolin–TiO2 and Solar Energy: Synergetic Mechanistic Insights. Heliyon. 2024;e36978. doi:10.1016/j.heliyon.2024.e36978

El-Dossoki FI, Atwee TM, Hamada AM, El-Bindary AA. Photocatalytic degradation of Remazol Red B and Rhodamine B dyes using TiO2 nanomaterial: estimation of the effective operating parameters. Desalination Water Treatment. 2021;233:319–330. doi:10.5004/dwt.2021.27519

Alireza K, Mohsen S, Aydin H, Mojtaba T, Semra K. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrasonics Sonochem. 2025;22:404–411. doi:10.1016/j.ultsonch.2014.07.002

Kasiri MB, Khataee AR. Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design. Desalination. 2011;270(1–3):151–159. doi:10.1016/j.desal.2010.11.039

Khataee AR, Mirzajani O. UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network. Desalinat. 2010;251:64–69. doi:10.1016/j.desal.2009.09.142

Zeinab AS, Achisa CM, Josphat IM. Effect of TiO2/Fe2O3 nanopowder synthesis method on visible light photocatalytic degradation of reactive blue dye. Heliyon. 2024;10(8):e29648. doi: 10.1016/j.heliyon.2024.e29648




DOI: https://doi.org/10.15826/chimtech.2024.11.4.09

Copyright (c) 2024 Bang Tam Thi Dao, Trung Do Nguyen, Hon Nhien Le, Chi-Nhan Ha-Thuc

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International