Green synthesis of CdFe2O4 by Terminalia catappa leave extract for photodegradation methyl red dye by response surface methodology
Abstract
Green synthesis using plant extracts is an eco-friendly approach that reduces the hazards associated with chemical usage. This study aimed to synthesize a CdFe2O4 ferrite compound utilizing Terminalia catappa leaves extract and evaluate its photocatalytic efficiency in degrading Methyl red dye. The X-ray diffraction (XRD) analysis confirms the synthesis of CdFe2O4, which has a crystallite size mean of 18.10 nm. The composite exhibits magnetic properties with a saturation magnetization of 28.34 emu/g, a band gap of 1.78 eV, and a BET surface area of 84.23 m2/g. The optimal photodegradation process was determined using Response Surface Methodology (RSM) based on an experiment with Central Composite Design (CCD). The variables examined included the solution pH, the initial concentration of the dye, and the irradiation time. The interplay of three variables demonstrated their reciprocal influence on photodegradation efficiency. The quadratic model is appropriate for modeling the photodegradation of Methyl red dye. The photodegradation efficiency of 96.56% is achieved under optimal conditions, which include a pH of 6.33, an initial dye concentration of 39.93 mg/L, and an irradiation time of 52.26 min. Empirical investigations on the reusability of CdFe2O4 have shown remarkable stability. Experimental kinetics confirm that the pseudo-first-order model is a suitable description for the photodegradation of Methyl red dye by CdFe2O4.
Keywords
Full Text:
PDFReferences
Wang Z, Hu M, Wang Q, Li L. Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O photocatalysts. J Clean Prod. 2022;332:1–10. doi:10.1016/j.jclepro.2021.130054
Raj RB, Umadevi M, Parimaladevi R. Enhanced photocatalytic degradation of textile dyeing wastewater under UV and visible light using ZnO/MgO nanocomposites as a novel photocatalyst. Part Sci Technol. 2020;38(7):812–820. doi:10.1080/02726351.2019.1616863
Ratnam MV, Karthikeyan C, Rao KN, Meena V. Magnesium oxide nanoparticles for effective photocatalytic degradation of methyl red dye in aqueous solutions: Optimization studies using response surface methodology. Mater Today Proc. 2020;26:2308–313. doi:10.1016/j.matpr.2020.02.498
Omotunde OI, Okoronkwo AE, Aiyesanmi AF, Gurgur E. Photocatalytic behavior of mixed oxide NiO/PdO nanoparticles toward degradation of Methyl red in water. J Photochem Photobiol A Chem. 2018;365:145–150. doi: 10.1016/j.jphotochem.2018.08.005
Kouakou LPM, Karidioula D, Manouan MRW, Pohan AGL, Cisse G, Konan LK, Andji-Yapi JY. Use of two clays from Cote ˆd’Ivoire for the adsorption of Methyl red from aqueous medium. Chem Phys Lett. 2020;810:1–8. doi:10.1016/j.cplett.2022.140183
Mahmoodi NM, Abdi J. Nanoporous metalorganic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchem J. 2019;144:436–442. doi: 10.1016/j.microc.2018.09.033
Nandhini NT, Rajeshkumar S, Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotechnol. 2019;19:1–10. doi: 10.1016/j.bcab.2019.101138
Bouzid T, Grich A, Naboulsi A, Regti A, Tahiri AA, Himri ME, Haddad ME. Adsorption of Methyl red on porous activated carbon from agriculture waste: Characterization and response surface methodology optimization. Inorg Chem Commun. 2023;158:1–12. doi:10.1016/j.inoche.2023.111544
Dessie Y, Tadesse S, Adimasu Y. Improving the performance of graphite anode in a microbial fuel cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and Methyl red removal. Chem Eng J Adv. 2022;10:1–13. doi:10.1016/j.ceja.2022.100283
Ndlovu LN, Ndlwana L, Mishra AK, Nxumalo EN, Mishra SB. Immobilizing palladium nanoparticles in beta-cyclodextrin-grafted graphene oxide modified polyvinylidene fluoride mixed matrix membranes for the removal of anionic azo dyes. Chem Eng Res Des. 2024;203:149–164. doi:10.1016/j.cherd.2024.01.044
Sharma K., Pandit S, Mathuriya AS, Gupta PK, Pant K, Jadhav DA. Microbial electrochemical treatment of Methyl red dye degradation using Co-Culture method. Water. 2023:15(56):1–17. doi:10.3390/w15010056
Anjali KP, Raghunathan R, Devi G, Dutta S. Photocatalytic degradation of Methyl red using seaweed mediated zinc oxide nanoparticles. Biocatal Agric Biotechnol. 2022;43:1–14. doi: 10.1016/j.bcab.2022.102384
Hariani PL, Salni S, Said M, Farahdiba R. Core-shell Fe3O4/SiO2/TiO2 magnetic modified Ag for the photocatalytic degradation of Congo red dye and antibacterial activity. Bull Chem React Eng Catal. 2023;18(2):315–330. doi:10.9767/bcrec.19275
Vishnu G, Singh S, Naik TSSK, Viswanath R, Ramamurthy PC, Bhadrecha P, Naik HSB, Singh J, Khan NA, Zahmatkesh S. Photodegradation of Methylene blue dye using light driven photocatalyst-green cobalt doped cadmium ferrite nanoparticles as antibacterial agents. J Clean Prod. 2023;404:1–15. doi:10.1016/j.jclepro.2023.136977
Yilkal DS, Abebe BG, Solomon GB. Optical photocatalytic degradation of Methylene blue using lignocellulose modified TiO2. AJOAP. 2017;5(5): 55–58. doi:10.11648/j.ajop.20170505.12
Narang SB, Pubby K. Nickel Spinel Ferrites: A review. J Magn Magn Mater. 2021;519:1–58. doi:10.1016/j.jmmm.2020.167163
Zohrabi Y. Synthesis and application of magnetic ferrites (MFe2O4) in the removal of heavy metals from aqueous solutions: An updated review. Mater Sci Eng B. 2024;299: 1–14. doi:10.1016/j.mseb.2023.117024
Riyanti F, Nurhidayah, Purwaningrum W, Yuliasari N, Hariani, PL. MgFe2O4 magnetic catalyst for photocatalytic degradation of Congo red dye in aqueous solution under visible light irradiation. Environ Nat Resour J. 2023;21(4):322–332. doi:10.32526/ennrj/21/20230002
Douafer S, Lahmar H, Laouici R, Akika FZ, Trari M, Avramova I, Benamira M. Synthesis and characterization of CdFe2O4 nanoparticles: Application for the removal of Methyl green under solar irradiation. Mater Today Proc. 2023:35:1–10. doi:10.1016/j.mtcomm.2023.105630
Golthi V, Kommu J. An eco-friendly and sustainable method for producing Fe3O4 nanoparticles using Jatropha podagrica leaf extract for efficient dye degradation and antibacterial uses. Hybrid Adv. 2023;4:1–11. doi:10.1016/j.hybadv.2023.100110
Udhaya PA, Ahmad A, Meena M, Queen MAJ, Aravind M, Velusamy P, Almutairi TM, Mohammed AAA, Ali S. Copper Ferrite nanoparticles synthesised using a novel green synthesis route: Structural development and photocatalytic activity. J Mol Struct. 2023;1277:1–7. doi:10.1016/j.molstruc.2022.134807
Saraçoglu M, Mansoor M, Bakırdoven U, Arpalı H, Gezici UO, Timur S. Challenging the frontiers of superparamagnetism through strain engineering: DFT investigation and co-precipitation synthesis of large aggregated Fe3O4 (magnetite) powder. J Alloys Compd. 2023;968:1–10. doi: 10.1016/j.jallcom.2023.171895
Hariani PL, Said M, Rachmat A, Riyanti F, Pratiwi HC, Rizki WT. Preparation of NiFe2O4 nanoparticles by solution combustion method as photocatalyst of Congo red. Bull Chem React Eng Catal. 2021;16(3):481–490. doi:10.9767/bcrec.16.3.10848.481-490
Balasubramani V, Mowlika V, Sivakumar A, Sdran NA, Maiz F, Shkir M. Design and investigation of Sonochemical synthesis of pure and Sn doped CoFe2O4 nanoparticles and their structural and magnetic properties. Inorg Chem Commun. 2023;155:1–6. doi:10.1016/j.inoche.2023.111015
Saridewi N, Utami DJ, Zulys A, Nurbayti S, Nurhasni, Adawiah, Putri AR, Kamal R. Utilization of Lidah mertua (Sansevieria trifasciata) extract for green synthesis of ZnFe2O4 nanoparticle as visible-light responsive photocatalyst for dye degradation. Case Stud Chem Environ Eng. 2024;9:1–9. doi:10.1016/j.cscee.2024.100745
Malik AR, Aziz MH, Atif M, Irshad MS, Ullah M, Gia TN, Ahmed H, Ahmad S, Botmart T. Lime peel extract induced NiFe2O4 NPs: Synthesis to applications and oxidative stress . mechanism for anticancer, antibiotic activity. J Saudi Chem Soc. 2022;26:1–11. doi:10.1016/j.jscs.2022.101422
Makofane A, Motaung DE, Hintsho-Mbita NC. Green synthesis of silver deposited on copper ferrite nanoparticles for the photodegradation of dye and antibiotics. Appl Surf Sci. 2024;21:1–15. doi:10.1016/j.apsadv.2024.100601
Alamier WM, Hasan N Nawaz MDS, Ismail KS, Shkir M, Malik MA, OteeF MDY. Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application. J Mater Res Technol. 2023;22:1331–48. doi:10.1016/j.jmrt.2022.11.181
Kalita C, Boruah PK, Das MR, Saikia P. Facile green synthesis of nickel-ferrite-rGO (NiFe2O4/rGO) nanocomposites for efficient water purification under direct sunlight. Inorg Chem Commun. 2022;146:1–10. doi:10.1016/j.inoche.2022.110073
Devadiga A, Shetty V, Saidutta MB. Highly stable silver nanoparticles synthesized using Terminalia catappa leaves as antibacterial agent and colorimetric mercury sensor. Mater Lett. 2017;207:66–77. doi: 10.1016/j.matlet.2017.07.024
Mantaring, SDA, Santos JRKD, Estrella R., Jose JPG, Castro IJL, Bigol UG, Guzman JPMD. Terminalia catappa L. leaf extract interferes with biofilm formation of Vibrio parahaemolyticus and enhances immune response of Penaeus vannamei against acute hepatopancreatic necrosis disease (AHPND). Aquac. 2024;579:1–10. doi:10.1016/j.aquaculture.2023.740266
Singh J, Dutta T, Kim K, Rawat M, Samddar, P, Kumar P. Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Nanobiotechnol. 2018;16(84):1–24. doi:10.1186/s12951-018-0408-4
Sharma Y, Sharma N, Rao GVS, Chowdari BVR. Li-storage and cycling properties of spinel, CdFe2O4, as an anode for lithium ion batteries. Bull Mater Sci. 2009;32:295–304. doi:10.1007/s12034-009-0043-7
Paul S, Shakya AK, Ghosh PK. Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni–Cd battery via hydrometallurgical route. J Environ Manage. 2020;16:1–10. doi:10.1016/j.jenvman.2020.110113
Varpe AS, Deshpande MD., Tope DR, Borhade AV. Enhanced photocatalytic performance of CdFe2O4/Al2O3 nanocomposite for dye degradation. Environ Sci Pollut Res. 2023;30:52549–60. doi:10.1007/s11356-022-24834-4
Keerthana SP, Yuvakkumar R, Ravi G, Arunmetha S, Thambidurai M, Velauthapillai D. Magnetically separable rare earth metal incorporated CdFe2O4 photocatalyst for degradation of cationic and azo dyes. J Mol Struct. 2024;1302:1–14. doi:10.1016/j.molstruc.2024.137479
Wan Y, Chen J, Zhan J, Ma Y. Facile synthesis of mesoporous NiCo2O4 fibers with enhanced photocatalytic performance for the degradation of Methyl red under visible light irradiation. J Environ Chem Eng. 2018;6(5):6079–87. doi:10.1016/j.jece.2018.09.023
Ravindra, A.V., Chandrika, M., Rajesh, C. P Kollu P, Ju S, Ramarao SD. Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. Eur Phys J Plus. 2019;134(296). doi: 10.1140/epjp/i2019-12690-2
Wang H, Ji P, Zhang Y, Zhang Y. Synthesis of magnetic Z-scheme MoS2/CdFe2O4 composite for visible light induced photocatalytic degradation of tetracycline. Mater Sci Semicond Process. 2022;152:1–11. doi:10.1016/j.mssp.2022.107075
Murshed MK, Dursun AY, Dursun G. Application of response surface methodology on photocatalytic degradation of Astrazon orange G dye by ZnO photocatalyst: Internal mass transfer effects. Chem Eng Res Des. 2022;188:27–38. doi:10.1016/j.cherd.2022.09.038
Fan H, Jiang T, Li H, Wang D, Wang L, Zhai J, He D, Wang P, Xie T. Effect of BiVO4 Crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J Phys Chem. 2012; 116(3):2425–30. doi:10.1021/jp206798d
Kanwal A, Rehman MU, Sattar R, Thebo KH, Kazi M. Highly efficient tin oxide and polyaniline-tin-oxide nanostructured materials for photocatalytic degradation of organic dyes. J Mol Struct. 2024;1312:1–12. doi:10.1016/j.molstruc.2024.138454
Nethravathi PC., Shruthi GS, Suresh D, NagabhushanaH, Sharma SC. Garcinia Xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int. 2015;41(7):8680–8687. doi:10.1016/j.ceramint.2015.03.084
Anjali KP, Raghunathan R, Devi G, DuttaS. Photocatalytic degradation of Methyl red using seaweed mediated zinc oxide nanoparticles. Biocatal Agric Biotechnol. 2022;43:1–13. doi:10.1016/j.bcab.2022.102384
Galenda A, Crociani L, El Habra N, Favaro M, Natile MM, Rossetto G. Effect of reaction conditions on Methyl red degradation mediated by boron and nitrogen doped TiO2. Appl Surf Sci. 2014;314:919–30. doi:10.1016/j.apsusc.2014.06.175
Alharbi AA, Aldaghri O, El-Badry BA, Ibnaouf KH, Alfadhi F, Albadri A, Ajmed AH, Modwi A. Degradation of Methyl Red (MR) dye via fabricated Y2O3–MgO/g-C3N4 nanostructures: Modification of band gap and photocatalysis under visible light. Opt Mater Express. 2024;152:1–11. doi:10.1016/j.optmat.2024.115443
Ch V, Sandupatla R, Lingareddy E, Raju D. One-pot synthesis of imines by direct coupling of alcohols and amines over magnetically recoverable CdFe2O4 nanocatalyst. Mater Lett. 2021;302:1–6. doi:10.1016/j.matlet.2021.130417
DOI: https://doi.org/10.15826/chimtech.2024.11.4.02
Copyright (c) 2024 Poedji Loekitowati Hariani, Salni, Eka Sri Yusmartini, Nabila Aprinati, Bijak Riyandi Ahadito
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International