Cover Image

Assessment of different crosslinked mechanisms on PVA-based membranes to achieve water resistant properties with iron imprinting sites

Ihsan Alfikro, Jorena Jorena, Octavianus Cakra Satya, Erry Koriyanti, Fiber Monado, Idha Royani

Abstract


Water-resistant PVA (polyvinyl alcohol) electrospun membranes with different crosslinking mechanisms were synthesized using the facile electrospinning technique. The crosslinking mechanisms were differentiated by introducing 2 different functional groups of different crosslinker agents into the molecular structure of the membrane. The evaluation of water resistance was conducted by both micro- and macro-structural analyses, such as Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), water contact angle (WCA), and immersion test. Infrared spectra confirmed the formation of new bands at around 1700 cm-1, which are acetal or ester groups, indicating the successful crosslinked process. Additionally, the lowered intensity of hydroxyl groups also signifies that the membrane is water-resistant. The XRD patterns showed the signature peak of PVA at the angle of 20°. Furthermore, the reduction in iron content, as shown by EDS spectra, was attributed to the surface imprinting process. SEM images displayed the formation of nanofibers, with mean diameters of 103 nm and interconnecting nanobead structures. The results showed that WCA was significantly enhanced, up to 91°, with minor loss in structure during water immersion test for 24 h. These findings confirm the hydrophobic characteristics of the membranes and their potential application in water-related fields.

Keywords


poly(vinyl)-alcohol; surface-imprinting; water resistant; crosslinked; electrospinning

Full Text:

PDF

References


Tran HD, Nguyen DQ. Study on methylene blue adsorption using cashew nut shell-based activated carbon. Chim Tech Acta. 2023;10(4):202310401. doi:10.15826/chimtech.2023.10.4.01

Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: Occurrence, toxicity and abatement. Environ Pollut. 2020;267:115474. doi:10.1016/j.envpol.2020.115474

Edianta J, Satya OC, Virgo F, Saleh K, Royani I. Design of potentiometric instrumentation system based on Arduino nano microcontroller using imprinted polymer for the determination of Fe (III) metal ions. AIP Conf Proc. 2023;120007. doi:10.1063/5.0125919

Li C, Yang L, Shi M, Liu G. Persistent organic pollutants in typical lake ecosystems. Ecotoxicol Environm Safety. 2019;180:668–678. doi:10.1016/j.ecoenv.2019.05.060

Chheang L, Thongkon N, Sriwiriyarat T, Thanasupsin SP. Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia. Sustainability. 2021;13(24):1–20. doi:10.3390/su132413538

Ugaz CAV, León-Roque N, Nuñez-León JL, Hidalgo-Chávez DW, Oblitas J. Geochemical and environmental assessment of potential effects of trace elements in soils, water, and sediments around abandoned mining sites in the northern Iberian Peninsula (NW Spain). Heliyon. 2023;9(3):1–11. doi:10.1016/j.heliyon.2023.e14659

Kamarati K, Ivanhoe M, Sumaryono M. Kandungan Logam Berat Besi (Fe), Timbal (Pb). dan Mangan (Mn) pada Air Sungai Santan [Heavy Metal Content Iron (Fe), Lead (Pb) and Manganese (Mn) in The Water of The Santan River]. J Penelitian Ekosistem Dipterokarpa. 2018;4(1):49–56. doi:10.20886/jped.2018.4.1.49-56

World Health Organization. Guidelines for Drinking water Quality. 3rd ed. Geneva: World Health Organization. 2008; 668 p.

Rusydi AF, Onodera SI, Saito M, Ioka S, Maria R, Ridwansyah I, et al. Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city. SN Appl Sci. 2021;3(4):12. doi:10.1007/s42452-021-04385-y

Raji Z, Karim A, Karam A, Khalloufi S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste. 2023;1(3):775–805. doi:10.3390/waste1030046

Royani I, Maimunah M, Edianta J, Alfikro I, Monado F, Jorena J, et al. Synthesis of Ion Imprinted Polymers (IIPs) Adsorbent Materials Using Fe(III) Leaching Process with Variation of Hydrochloric Acid Solvent Concentration and Heat Treatment. Sci Technol Indones. 2024;9(2):336–344. doi:10.26554/sti.2024.9.2.336-344

Novianty N, Edianta J, Jorena J, Saleh K, Bama AA, Koriyanti E, et al. Synthesis of Fe(III)-IIPs (Ion Imprinted Polymers): Comparing Different Concentrations of HCl and HNO3 Solutions in the Fe(III) Polymer Extraction Process for Obtaining the Largest Cavities in Fe(III)-IIPs. Sci Technol Indones. 2023;8(3):361–366. doi:10.26554/sti.2023.8.3.361-366

Ye S, Zhang W, Hu X, He H, Zhang Y, Li W, et al. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers. 2023;15(11):1–23. doi:10.3390/polym15112416

Aljohani MS, Alnoman RB, Alharbi HY, Al-Anazia M, Monier M. Designing of a cellulose-based ion-imprinted biosorbent for selective removal of lead(II) from aqueous solutions. Int J Biol Macromolec. 2024;259(129145):1–14. doi:10.1016/j.ijbiomac.2023.129145

Çıtlakoğlu M, Yolcu Z. Dinuclear Pb(II) monomer complex: Synthesis, characterization, and application of Pb(II) ion-imprinted polymer as a selective potentiometric microsensor. Polyhedron. 2023;243(116539):1-10. doi:10.1016/j.poly.2023.116539

Zhao R, Li X, Sun B, Li Y, Li Y, Wang C. Preparation of molecularly imprinted sericin/poly(vinyl alcohol) electrospun fibers for selective removal of methylene blue. Chem Res Chin Univ. 2017;33(6):986–994. doi:10.1007/s40242-017-7115-9

Li Y, Zhang J, Xu C, Zhou Y. Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem. 2016;59(1):95–105. doi:10.1007/s11426-015-5526-3

Kanu NJ, Gupta E, Vates UK, Singh GK. Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers. Mater Res Express. 2020;7(3):1–27. doi:10.1088/2053-1591/ab7f60

Ahmadijokani F, Molavi H, Bahi A, Wuttke S, Kamkar M, Rojas OJ, et al. Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal. Chem Engineering J. 2023;457(141176):1–12. doi:10.1016/j.cej.2022.141176

Maksotova KS, Kalikh DT, Omirzakova AT, Bakirova BS, Akbayeva DN. Polymer-metal complex based on copper(II) acetate and polyvinyl alcohol: thermodynamic and catalytic properties. Chim Tech Acta. 2022;9(3):20229304;6015. doi:10.15826/chimtech.2022.9.3.04

Song M, Yu H, Gu J, Ye S, Zhou Y. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int J Biol Macromolec. 2018;113:171–178. doi:10.1016/j.ijbiomac.2018.02.117

Zanini S, Papagni A, Vaghi L, Kaur Thatti B, Barton S, Williams N, et al. Sulfur Hexafluoride (SF6) Plasma Treatment of Medical Grade Poly(methyl methacrylate). Coatings. 2020;10(2):1–14. doi:10.3390/coatings10020135

Chen W, Gao Z, He M, Dou Y, Yin G, Ding J. Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing. Reactive and Functional Polymers. 2022;172(105203):1–9. doi:10.1016/j.reactfunctpolym.2022.105203

Czibulya Z, Csík A, Tóth F, Pál P, Csarnovics I, Zelkó R, et al. The Effect of the PVA/Chitosan/Citric Acid Ratio on the Hydrophilicity of Electrospun Nanofiber Meshes. Polymers. 2021;13(20):1–18. doi:10.3390/polym13203557

Jeong S, Oh SG. Antiacne Effects of PVA/ZnO Composite Nanofibers Crosslinked by Citric Acid for Facial Sheet Masks. Xiao H, editor. Int J Polymer Sci. 2022;2022:1–7. doi:10.1155/2022/4694921

Döbelin N, Archer R, Tu V. A free and open-source solution for Rietveld refinement of XRD data from the CheMin instrument onboard the Mars rover Curiosity. Planetary Space Sci. 2022;224(105596):1-13. doi:10.1016/j.pss.2022.105596

Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;364(1–3):72–81. doi:10.1016/j.colsurfa.2010.04.040

Felix CSA, Chagas AVB, De Jesus RF, Barbosa WT, Barbosa JDV, Ferreira SLC, et al. Synthesis and Application of a New Polymer with Imprinted Ions for the Preconcentration of Uranium in Natural Water Samples and Determination by Digital Imaging. Molec. 2023;28(10):1–15. doi:10.3390/molecules28104065

Sun M, Wang Y, Yao L, Li Y, Weng Y, Qiu D. Fabrication and Characterization of Gelatin/Polyvinyl Alcohol Composite Scaffold. Polymers. 2022;14(7):1-14. doi:10.3390/polym14071400

Zheng W, Sun C, Bai B. Molecular Dynamics Study on the Effect of Surface Hydroxyl Groups on Three-Phase Wettability in Oil-Water-Graphite Systems. Polymers. 2017;9(8):1–9. doi:10.3390/polym9080370

Huang SM, Liu SM, Tseng HY, Chen WC. Effect of Citric Acid on Swelling Resistance and Physicochemical Properties of Post-Crosslinked Electrospun Polyvinyl Alcohol Fibrous Membrane. Polymers. 2023;15(7):1–13. doi:10.3390/polym15071738

Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Development of PVA/gelatin nanofibrous scaffolds for Tissue Engineering via electrospinning. Mater Res Express. 2018;5(3):1–8. doi:10.1088/2053-1591/aab164

Li M, Guo L, Mu Y, Huang X, Jin L, Xu Q, et al. Gelatin films reinforced by tannin-nanocellulose microgel with improved mechanical and barrier properties for sustainable active food packaging. Food Hydrocolloids. 2024;149(109642):1–11. doi:10.1016/j.foodhyd.2023.109642

Etxabide A, Akbarinejad A, Chan EWC, Guerrero P, De La Caba K, Travas-Sejdic J, et al. Effect of gelatin concentration, ribose, and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers. European Polymer Journal. 2022;180(111597):1–11. doi:10.1016/j.eurpolymj.2022.111597

Kumar A, Ryparová P, Hosseinpourpia R, Adamopoulos S, Prošek Z, Žigon J, et al. Hydrophobicity and resistance against microorganisms of heat and chemically crosslinked poly(vinyl alcohol) nanofibrous membranes. Chemical Engineering Journal. 2019;360:788–796. doi:10.1016/j.cej.2018.12.029

Huang CY, Hu KH, Wei ZH. Comparison of cell behavior on PVA/PVA-Gelatin electrospun nanofibers with random and aligned configuration. Sci Rep. 2016;6(37960):1-8. doi:10.1038/srep37960

Klein DR. Organic Chemistry. 4th ed. Hoboken: John Wiley & Sons; 2021. 1302 p.

Yagizatli Y, Sahin A, Ar I. Effect of thermal crosslinking process on membrane structure and PEM fuel cell applications performed with SPEEK-PVA blend membranes. International J Hydrogen Energy. 2022;47(95):40445–40461. doi:10.1016/j.ijhydene.2022.04.183

Nandiyanto ABD, Ragadhita R, Fiandini M. Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian J Sci Technol. 2022;8(1):113–126. doi:10.17509/ijost.v8i1.53297

Vatanpour V, Kose-Mutlu B, Koyuncu I. Electrospraying technique in fabrication of separation membranes: A review. Desalination. 2022;533(115765):1-17. doi:10.1016/j.desal.2022.115765

Zhang H, Liu Z, Zhang J, Zhang L, Wang S, Wang L, et al. Identification of Edible Gelatin Origins by Data Fusion of NIRS, Fluorescence Spectroscopy, and LIBS. Food Anal Methods. 2021;14(3):525–536. doi:10.1007/s12161-020-01893-2

Cao Y, Hu X, Zhu C, Zhou S, Li R, Shi H, et al. Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb(II) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;600(125004):1-8. doi:10.1016/j.colsurfa.2020.125004

Ahlawat J, Kumar V, Gopinath P. Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Mater Sci Engin C. 2019;103(109834):1–9. doi:10.1016/j.msec.2019.109834

Pandey VK, Upadhyay SN, Niranjan K, Mishra PK. Antimicrobial biodegradable chitosan-based composite Nanolayers for food packaging. Int J Biol Macromolec. 2020;157(1):212–219. doi:10.1016/j.ijbiomac.2020.04.149

He W, Yu Q, Wang N, Ouyang X kun. Efficient adsorption of Cu(II) from aqueous solutions by acid-resistant and recyclable ethylenediamine tetraacetic acid-grafted polyvinyl alcohol/chitosan beads. J Molecular Liquids. 2020;316(113856):1–10. doi:10.1016/j.molliq.2020.113856

Suderman N, Isa MIN, Sarbon NM. Characterization on the mechanical and physical properties of chicken skin gelatin films in comparison to mammalian gelatin films. IOP Conf Ser: Mater Sci Eng. 2018;440:1–12. doi:10.1088/1757-899X/440/1/012033

Mosleh Y, De Zeeuw W, Nijemeisland M, Bijleveld JC, Van Duin P, Poulis JA. The Structure–Property Correlations in Dry Gelatin Adhesive Films. Adv Eng Mater. 2021;23(1):1–9. doi:10.1002/adem.202000716

Hartig SM. Basic Image Analysis and Manipulation in ImageJ. Curr Protocols Molecular Biol. 2013;102(1):1–12. doi:10.1002/0471142727.mb1415s102

Ding J, Chen M, Chen W, He M, Zhou X, Yin G. Vapor-Assisted Crosslinking of a FK/PVA/PEO Nanofiber Membrane. Polymers. 2018;10(7):747–757. doi:10.3390/polym10070747

Miraftab M, Saifullah AN, Çay A. Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: comparative study on methanol and heat-based crosslinking. J Mater Sci. 2015;50(4):1943–1957. doi:10.1007/s10853-014-8759-1

Hulupi M, Haryadi H. Synthesis and Characterization of Electrospinning PVA Nanofiber-Crosslinked by Glutaraldehyde. Mater Today Proc 2019;13:199–204. doi:10.1016/j.matpr.2019.03.214




DOI: https://doi.org/10.15826/chimtech.2024.11.3.01

Copyright (c) 2024 Ihsan Alfikro, Jorena, Octavianus Cakra Satya, Erry Koriyanti, Fiber Monado, Idha Royani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International