Effect of graphite filler on the physiochemical properties of graphite reinforced thermoset rooflite – unsaturated polyester resin composites
Abstract
It is well known that many polymers are insulators with poor mechanical properties, which limit their use in fuel cell applications. Physicochemical properties of the polymers can be improved by adding conductive fillers. Carbon-based materials like graphite, which provides excellent mechanical strength and thermal conductivity to the polymer matrices, is of special interest because of its abundance, low cost and light weight when compared to other carbon allotropes. In the present work we describe the physicochemical properties of rooflite unsaturated polyester resin/graphite composites. Rooflite resin and three of its composites containing 1%, 3% and 5% of graphite by weight (C-2, C-3, and C-4, respectively) were synthesized and characterized by FTIR spectral data. XRD showed two peaks at 2q = 27.37°and 55.40° with d spacing value of 3.2559 nm and 1.6571 nm, respectively, indicating the change in degree of crystallinity of the composite. The calculated crystallinity for the resin is 7.3%, and for C-2, C-3 and C-4 its values are 12.1%, 14.3%, 17.1%, respectively, evidencing the interactions between the graphite and polymer matrix. The composites showed fractured surfaces and porous rough structure with randomly distributed vascularized cavities. Agglomeration occurs, when the concentration of graphite increases. The glass transition temperature for the pure resin is 65.9 °C and increases when the resin is filled with graphite. Thermogravimetric analysis (TGA) of the composites showed no marked difference between Tmax and Tfinal, and LOI values of C-3 and C-4 are above 21%, making them self-extinguishable materials that could be used for making bipolar plates. The chemical resistance investigation against water, NaCl, NaOH, acetic acid, and toluene showed more resistance to acid than alkali solutions. These rooflite resin/graphite composites could be further studied to explore the possibility of making bipolar plates, which are an essential component of fuel cells.
Keywords
Full Text:
PDFReferences
Mutar MA, Safi Khliwi F, Jameel Kamel R. Mechanical properties of new composite unsaturated polyesters based on nano fillers for marine application. J Phys Conf Ser. 2019;1294(5):052075. doi:10.1088/1742-6596/1294/5/052075
Mohammed AJ, Razza HA. Study the effect of the adding the copper powder on the mechanical properties for unsaturat-ed polyester. J Sci Eng Res. 2017;4(8):151.
Gañán P, Barajas J, Zuluaga R, Castro C, Marín D, Tercjak A. Builes DH. The evolution and future trends of unsaturated polyester biocomposites: a bibliometric analysis. Polymers (Basel). 2023;15(13):2970. doi:10.3390/polym15132970
Obayi CS, Odukwe AO, Obikwelu DON. Some tensile proper-ties of unsaturated polyester resin reinforced with varying volume fractions of carbon black nanoparticles. Niger J Technol. 2008;27(1):20.
Goudarzi R, Motlagh GH. An Insight into the diffusion of unsaturated polyester (UP) resin into Expanded Graphite (EG) to improve the mechanical properties of the UP/EG composites. J Macromol Sci Part B. 2020;59(8):502. doi:10.1080/00222348.2020.1747231
Yavari N, Poorabdollah M, Rajabi L. Modified and unmodi-fied Graphite/unsaturated polyester resin composites: thermal and mechanical behavior. Iran J Chem Eng. 2020;17(2):14. doi:10.22034/ijche.2020.232609.1334
Swain S. Synthesis and characterization of graphene based unsaturated polyester resin composites. Trans Electr Elec-tron Mater. 2013;14(2):53. doi:10.4313/TEEM.2013.14.2.53
Goudarzi R, Motlagh GH, Elhamnia M, Motahari S, Graphite nanosheet as low shrinkage additive, curing accelerator, and conducting filler for unsaturated polyester resin. Polym Plast Technol Eng. 2016;55(12):1231. doi:10.1080/03602559.2015.1132468
Bastiurea M, Rodeanu Bastiurea MS, Andrei G, Dima D, Murarescu M, Ripa M, Circiumaru A. Determination of spe-cific heat of polyester composite with graphene and graph-ite by differential scanning calorimetry. Tribol Ind. 2014;36(4):419.
Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text ReS J. 1959;29(10):786.
Jiang L, Zheng A, Zhao Z, He F, Li H, Wu N. The comparison of obtaining fermentable sugars from cellulose by enzy-matic hydrolysis and fast pyrolysis. Bioresour Technol. 2016;200:8. doi:10.1016/j.biortech.2015.09.096
Dwyer JL, Zhou M, Polymer characterization by combined chromatography-infrared spectroscopy. Int J Spectrosc. 2011;1. doi:10.1155/2011/694645
Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C. Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys. 2014;116(5):053518-1. doi:10.1063/1.4892089
Koto N, Soegijono B. Effect of rice husk ash filler of re-sistance against of high-speed projectile impact on polyes-ter-fiberglass double panel composites. J Phys Conf Ser. 2019;1191:012058. doi:10.1088/1742-6596/1191/1/012058
Knežević N, Jovanović A, Bošnjaković J, Milošević M, Rančić M, Marinković A, J. Gržetić, H. Gamoudi, Fire-resistant composites based on acrylic-functionalized lignin and poly-ester resin obtained from waste poly(ethylene tereph-thalate). Sci Tech Rev. 2022;72(2):32. doi:10.5937/str2202032K
Lee UJ, Shin SR, Noh H, Song HB, Kim J, Lee DS, Kim BG. Rationally designed eugenol-based chain extender for self-healing polyurethane elastomers. ACS Omega. 2021;6(43):28848. doi:10.1021/acsomega.1c03802
Zięba-Palus J, The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes. Fo-rensic Sci Criminol. 2017;2(2):1. doi:10.15761/FSC.1000112
Reddy KO, Shukla M, Maheswari CU, Rajulu AV. Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. J Com-pos Mater. 2012;46(23):2987. doi:10.1177/0021998312454032
Bera M, Chandravati, Gupta P, Maji PK, Facile One-Pot Syn-thesis of graphene oxide by sonication assisted mechano-chemical approach and its surface chemistry. J Nanosci Nanotechnol. 2018;18(2):902. doi:10.1166/jnn.2018.14306
Ruiz S, Tamayo JA, Ospina JD, Navia Porras DP, Valencia Zapata ME, Hernandez JHM, Valencia CH, Zuluaga F, Grande Tovar CD. Antimicrobial films based on nanocom-posites of chitosan/poly(vinyl alcohol)/graphene oxide for biomedical applications. Biomolecules. 2019;9(3):109. doi:10.3390/biom9030109
Ban FY, Majid SR, Huang NM, Lim HN. Graphene oxide and its electrochemical performance. Int J Electrochem Sci. 2012;7:4345.
Isa MT, Ahmed AS, Aderemi O, Taib M, Mohammed-Dabo IA. Effect of dioctyl phthalate on the properties ofunsaturated polyester resin. Int J Mater Sci. 2012;7(1):9.
Ambika MR, Nagaiah N, Harish V, Lokanath NK, Sridhar MA, Renukappa NM, Suman SK. Preparation and characterisa-tion of Isophthalic-Bi2O3 polymer composite gamma radia-tion shields. Radiat Phys Chem. 2017;130:351. doi:10.1016/j.radphyschem.2016.09.022
Pichaimani P, Arumugam H, Gopalakrishnan D, Krish-nasam B, Muthukaruppan A. Partially exfoliated α-ZrP rein-forced unsaturated polyester nanocomposites by simulta-neous co-polymerization and brønsted acid–base strategy. J Inorg Organomet Polym Mater. 2020;30(10):4095. doi:10.1007/s10904-020-01558-x
Stanev V, Vesselinov V.V, Kusne AG, Antoszewski G, Takeuchi I, Alexandrov BS. Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering. Npj Comput Mater. 2018;4(1):43. doi:10.1038/s41524-018-0099-2
Maradini G, Oliveira M, Guanaes G, Passamani GZ, Car-reira LG, Boschetti WTN, Monteiro SN, Pereira AC, de Oliveira BF. Characterization of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystals poly-mers (Basel). 2020;12(12):2838. doi:10.3390/polym12122838
Wangn Y, Zhang M, Chang S, Li S, Huang X. Laser-induced ignition and combustion behavior of individual graphite microparticles in a micro-combustor processes. 2020;8(11):1493. doi:10.3390/pr8111493
Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M. A facile synthesis of graphite/silicon/graphene spheri-cal composite anode for lithium-ion batteries. Electrochim Acta. 2013;104:117. doi:10.1016/j.electacta.2013.04.083
Braga NF, Passador FR, Saito E, Cristovan FH. Effect of graphite content on the mechanical properties of Acryloni-trile-Butadiene-Styrene (ABS). Macromol Symp. 2019;383(1):1800018. doi:10.1002/masy.201800018
Zhou L, Zhou R, Zuo J, Tu S, Yin Y, Ye L. Unsaturated polyes-ter resins with low- viscosity: preparation and mechanical properties enhancement by isophorone diisocyanate (IPDI) modification. Mater Res Express. 2019;6(11):115305. doi:10.1088/2053-1591/ab4380
Feng L, Li R, Yang H, Chen S, Yang W. The hyperbranched polyester reinforced unsaturated polyester resin. Polymers (Basel). 2022;14(6):1127. doi:10.3390/polym14061127
Heo SI, Yun JC, Oh KS, Han KS, Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Adv Compos Mater. 2006;15(1):115. doi:10.1163/156855106776829356
Alghamdi AS, Ashcroft IA, Song M. Creep resistance of novel Polyethylene/Carbon Black nanocomposites. Int J Mater Sci Eng. 2014;15:16. doi:10.12720/ijmse.2.1.1-5
Ukoba KO, Inambao FL, Eloka-Eboka AC. Fabrication of Af-fordable and sustainable solar cells using NiO/TiO2 P - N Heterojunction. Int J Photoenergy. 2018;2018:1. doi:10.1155/2018/6062390
Dusevich VM, Purk JH, Eick JD, Choosing the Right Acceler-ating Voltage for SEM (An Introduction for Beginners). Mi-cros Today. 2010;18(1):48. doi:10.1017/S1551929510991190
Hapke J, Gehrig F, Huber N, Schulte K, Lilleodden ET. Com-pressive failure of UD-CFRP containing void defects: In situ SEM microanalysis Compos Sci Technol. 2017;71(1):1242. doi:10.1016/j.compscitech.2011.04.009
Abdul Khalil HPS, Tye YY, Ismail Z, Leong JY, Saurabh CK, Lai TK, Chong EWN, Aditiawati P, Tahir PM, Dungani R. Oil palm shell nanofiller in seaweed-based composite film: Mechanical, Physical, and Morphological Properties. BioRe-sources. 2017;12(3):5996. doi:10.15376/biores.12.3.5996-6010
Bing N, Yang J, Gao H, Xie H, Yu W. Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion. Renew Energy. 2021;173:926. doi:10.1016/j.renene.2021.04.033
Bastiurea M, Bastiurea MS, Andrei G, Murarescu M, Du-mitru D. Determination of Glass Transition Temperature for Polyester / Graphene Oxide and Polyester / Graphite Composite by TMA and DSC. Metall Mater Sci. 2015;38(2):32.
Jaya Vinse Ruban Y, Ginil Mon S, Vetha Roy D. Chemical resistance/thermal and mechanical properties of unsatu-rated polyester-based nanocomposites. Appl Nanosci. 2014;4(2):233. doi:10.1007/s13204-013-0193-1
Jia W, Tchoudakov R, Narkis M, Siegmann A, Performance of expanded graphite and expanded milled-graphite fillers in thermosetting resins. Polym Compos. 2005;26(4):526. doi:10.1002/pc.20123
Bastiurea M, Rodeanu MS, Andrei G, Dima D, Cantaragiu A. Correlation between graphene oxide / graphite content and thermal properties of polyester composites. Dig J Nano-mater Biostructures. 2015;10(4):1109.
Cherian AB, Varghese LA, Thachil ET, Epoxy-modified, un-saturated polyester hybrid networks. Eur Polym J. 2007;43(4):1460. doi:10.1016/j.eurpolymj.2006.12.041
Magampa PP, Manyala N, Focke WW. Properties of graphite composites based on natural and synthetic graphite pow-ders and a phenolic novolac binder. J Nucl Mater. 2013;436(1–3):76. doi:10.1016/j.jnucmat.2013.01.315
Bastiurea M, Rodeanu MS, Dima D, Murarescu M, Andrei G. Thermal and mechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Bio-structures. 2015;10(2):521.
Kandare E, Kandola BK, Price D, Nazaré S, Horrocks RA. Study of the thermal decomposition of flame-retarded un-saturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym Degrad Stab. 2008;93(11):1996. doi:10.1016/j.polymdegradstab.2008.03.032
Tibiletti L, Longuet C, Ferry L, Coutelen P, Mas A, Robin JJ, Lopez-Cuesta JM. Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym Degrad Stab. 2011;96(1):67. doi:10.1016/j.polymdegradstab.2010.10.015
Dai K, Song L, Hu Y. Study of the flame retardancy and thermal properties of unsaturated polyester resin via in-corporation of a reactive cyclic phosphorus-containing monomer. High Perform Polym. 2013;25(8):938. doi:10.1177/0954008313490767
Ramadan N, Taha M, La Rosa AD, Elsabbagh A. Towards selection charts for epoxy resin, unsaturated polyester res-in and their fibre-fabric composites with flame retardants. Mater. 2021;14(5):1181. doi:10.3390/ma14051181
Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Du-bois P. New prospects in flame retardant polymer materi-als: From fundamentals to nanocomposites Mater Sci Eng R Reports. 2009;63(3):100. doi:10.1016/j.mser.2008.09.002
Ranganathan T, Beaulieu M, Zilberman J, Smith KD, West-moreland PR, Farris RJ, Coughlin EB, Emrick T. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry. Polym Degrad Stab. 2008;93(6):1059. doi:10.1016/j.polymdegradstab.2008.03.021
Dai K, Song L, Jiang S, Yu B, Yang W, Yuen RKK, Hu Y. Un-saturated polyester resins modified with phosphorus-containing groups: Effects on thermal properties and flammability Polym Degrad Stab. 2013;98(10):2033. doi:10.1016/j.polymdegradstab.2013.07.008
Noorunnisa Khanam P, Abdul Khalil HPS, Jawaid M, Rama-chandra Reddy G, Surya Narayana C, Venkata Naidu S. Si-sal/Carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Envi-ron. 2010;18(4):727. doi:10.1007/s10924-010-0210-3
Ramamoorthi R, Sampath PS. Experimental investigation of influence of Halloys nanotubes on mechanical and chemi-cal resistance properties of glass fiber reinforced epoxy non composites. J Sci Ind Res. 2015;74:685.
Ashok Kumar M, Hemachandra Reddy K, Ramachandra Red-dy G, Venkata Mohana Reddy Y, Subbarami Reddy, Tensile, thermal properties & chemical resistance of epoxy/hybrid fibre composites (Glass/Jute) filled with silica powder. Macromol Indian J. 2010;6(2):133.
Tasnim S, Uddin Ahmed Shaikh F. Effect of chemical expo-sure on mechanical properties and microstructure of lightweight polymer composites containing solid waste fillers. Constr Build Mater. 2021;309:125192. doi:10.1016/j.conbuildmat.2021.125192
Singha AS, Thakur VK. Chemical resistance, mechanical and physical properties of biofibers -based polymer compo-sites. Polym Plast Technol Eng. 2009;48(7):736. doi:10.1080/03602550902824622
Hazarika A, Maji TK. Study on the properties of wood poly-mer nanocomposites based on melamine formaldehyde-furfuryl alcohol copolymer and modified clay. J Wood Chem Technol. 2013;33(2):103. doi:10.1080/02773813.2012.751428
Mandal M, Halim Z, Maji TK. Mechanical, moisture absorp-tion, biodegradation and physical properties of nanoclay-reinforced wood/plant oil composites SN Appl Sci. 2020;2(2):250. doi:10.1007/s42452-020-1984-0
Karthikeyan SKS, Sujatha MSM, Hemalatha NHN. Synthesis and characterization of multi-walled carbon nanotube from pine oil and their impact on carbon fibre reinforced epoxy hybrid nanocomposite. J Environ Nanotechnol. 2021;10(2):10. doi:10.13074/jent.2021.06.212437
DOI: https://doi.org/10.15826/chimtech.2024.11.1.08
Copyright (c) 2024 M. Karunakaran, Ravi Subban, A. Thangamani, Chinnaswamy Vijayakumar Thangavel
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International