Anodic dissolution of gallium in alkali metal chloride melts
Abstract
Keywords
Full Text:
PDFReferences
Wilson PD. The Nuclear Fuel Cycle: from Ore to Wastes. Ox-ford University Press: Oxford; 1996. 323 p.
Nawada HP, Fukuda K. Role of pyrochemical processes in advanced fuel cycles. J Phys Chem Solids. 2005;66:647. doi:10.1016/j.jpcs.2004.07.022
Mendes E, Conocar O, Laplace A, Douyere N, Miguirditchian M. Study of innovative chemical processes for sodium fast re-actor fuel assemblies cleaning. Procedia Chem. 2012;7:791. doi:10.1016/j.proche.2012.10.120
Mirza M, Abdulaziz R, Maskell WC, Wilcock S, Jones AH, Woodall S, Jackson A, Shearing PR, Brett DJL. Electrochemical processing in molten salts – a nuclear perspective. Energy En-viron Sci. 2023;16:952. doi:10.1039/d2ee02010f
Ignatiev V, Feynberg O, Gnidoi I, Konakov S, Kormilitsyn M, Merzliakov A, Surenkov A, Uglov V, Zagnitko A. MARS: Story on molten salt actinide recycler and transmuter development by Rosatom in co-operation with Euratom in Actinide and Fission Product Partitioning and Transmutation. Thirteenth Infor-mation Exchange Meeting, Nuclear Science NEA/NSC/R. 2015;2:92–103.
Allibert M, Delpech S, Gerardin D, Heuer D, Laureau A, Merlea E. Homogeneous molten salt reactors (MSRs): The molten salt fast reactor (MSFR) concept. Handbook of Generation IV Nu-clear Reactors: Pioro IL. Woodhead Publishing: Sawston; 2016. 231–257 pp.
Serp J, Allibert M, Benes O, Delpech S, Feynberg O, Ghetta V, Heuer D, Holcomb D, Ignatiev V, Kloosterman JL, Luzzi L, Merle-Lucotte E, Uhlír J, Yoshioka R, Zhimin D. The molten salt reactor (MSR) in generation IV: Overview and perspec-tives. Prog Nucl Energy. 2014;77:308.
Bychkov AV, Skiba OV. Review of non-aqueous nuclear fuel reprocessing and separation methods. Chem Sep Technol Re-lated Methods Nuclear Waste Manag. 1999:71–98.
Inoue T, Sakamura Y. Pyrochemistry in nuclear industry. Mol-ten Salts: From Fundamentals to Applications. 2002:249–261.
Jiang D, Zhang D, Li X, Wang S, Wang C, Qin H, Guo Y, Tian W, Su GH, Qiu S. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook. Renewable Sustain Energy Rev. 2022;161. doi:10.1016/j.rser.2022.112345
Morgan LG, Burger LL, Scheele RD. Molten salt oxidation-reduction processes for fuel processing. Actinide SepACS Sym-posium Ser. 1979;117:233–252.
Brambilla G, Facchini AG. U-Pu recovery by molten alkaline sulphates. Radiochim. Acta. 1984;36:37.
Griffiths TR, Volkovich VA, Yakimov SM, May I, Sharrad CA, Charnock JM. Reprocessing spent nuclear fuel using molten carbonates and subsequent precipitation of rare earth fission products using phosphate. J Alloys Comp. 2006;418:116–121.
Volkovich, VA, Maltsev DS, Raguzina EV, Dedyukhin AS, Shchetinskiy AV, Yamshchikov LF, Chukin AV. Thermodynam-ics of rare earth elements and uranium in gallium based qua-ternary metallic alloys. J Alloys Compd. 2019787:367–378. doi:10.1016/j.jallcom.2019.02.081
Xu H, Zhang W, Wang C, Yang M, Yan T, Yan Y, Zhang M. Mol-ten salt/liquid metal extraction: electrochemical behaviors and thermodynamics properties of La, Pr, U and separation factors of La/U and Pr/U couples in liquid gallium cathode. Appl Ra-diat Isot. 2022;182. doi:10.1016/j.apradiso.2022.110149
Liu K, Chai ZF, Shi WQ. Liquid Electrodes for An/Ln separa-tion in pyroprocessing. J Electrochem Soc. 2021;168. doi:10.1149/1945-7111/abec99
Volkovich VA, Maltsev DS, Melchakov SY, Yamshchikov LF, Novoselova AV, Smolensky VV. Separation of lanthanides and actinides in a chloride melt - liquid metal system: the effect of phase composition. ECS Trans. 2016;75:397–408. doi:10.1149/07515.0397ecst
Dedyukhin AS, Shchetinskiy AV, Kharina EA, Shchepin IE, Volkovich VA, Yamshchikov LF, Osipenko AG. Electrochemical and thermodynamic properties of lanthanum in a chloride melt - liquid metal system. ECS Trans. 2016;75:265–274. doi:10.1149/07515.0265ecst
Smolenski V, Novoselova A, Osipenko A, Maershin A. Thermo-dynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Elec-trochim Acta. 2014;145:81–85. doi:10.1016/j.electacta.2014.08.081
Smolenski V, Novoselova A, Volkovich VA. Thermodynamics of La and U and the separation factor of U/La in fused Me(Ga-40 wt.% In)/3LiCl-2KCl system. J Nucl Mater. 2017;495:285–290. doi:10.1016/j.jnucmat.2017.08.017.
Novoselova A, Smolenski V, Volkovich VA, Luk’yanova Y. Ther-modynamic properties of ternary Me-Ga-In (Me = La, U) al-loys in a fused Ga-In/LiCl-KCl system. J Chem Thermodyn. 2019;130:228–234. doi:10.1016/j.jct.2018.10.014
Novoselova A, Smolenski V, Volkovich VA, Ivanov AB, Osipenko A, Griffiths TR. Thermodynamic properties of La–Ga–Al and U–Ga–Al Alloys and the separation factor of U/La couple in the molten salt–liquid metal system. J Nucl Mater. 2015;466:373–378. doi:10.1016/j.jnucmat.2015.08.010
Dedyukhin AS, Kharina EA, Raguzina EV, Maltsev DS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF. Solubility of lanthanum and uranium in Ga–In and Ga–Al eutectic based al-loys. AIP Conf Proc. 2018;2015:020019. doi:10.1063/1.5055092
Volkovich VA, Maltsev DS, Yamshchikov LF, Osipenko AG. Thermodynamic properties of uranium in liquid gallium, indi-um and their alloys. J Nucl Mater. 2015;464:263–269. doi:10.1016/j.jnucmat.2015.04.054
Dedyukhin AS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF, Osipenko AG. Lanthanum activity, activity coefficients and sol-ubility in gallium-indium liquid alloys. ECS Trans. 2014;64:227–234. doi:10.1149/06404.0227ecs
Shchetinskiy AV, Dedyukhin AS, Volkovich VA, Yamshchikov LF, Maisheva AI, Osipenko AG, Kormilitsyn MV. Thermodynamic properties of lanthanum in gallium–indium eutectic based al-loys. J Nucl Mater. 2013;435:202–206. doi:10.1016/j.jnucmat.2012.12.035
Dedyukhin AS, Shepin IE, Kharina EA, Shchetinskiy A V, Volkovich VA, Yamshchikov LF. Thermodynamic properties of lanthanum in gallium–zinc alloys. AIP Conf Proc. 2016;1767:020006. doi:10.1063/1.4962590
Novoselova A, Smolenski V. The influence of the temperature and ga-in alloy composition on the separation of uranium from neodymium in molten Ga-In/3LiCl-2KCl system during the re-cycling of high-level waste. J Nucl Mater. 2018;509:313–317. doi:10.1016/j.jnucmat.2018.06.040
Smolenski V, Novoselova A, Osipenko A, Kormilitsyn M, Luk’Yanova Y. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochim Acta. 2014;133:354–358. doi:10.1016/j.electacta.2014.04.042
Smolenski V, Novoselova A, Volkovich V, Luk’yanova Y, Osipen-ko A, Bychkov A, Griffiths TR. The Effect of Al Concentration on thermodynamic properties of Nd and U in Ga–Al-based al-loys and the separation factor of Nd/U couple in a “molten salt-liquid metal system”. J Radioanal Nucl Chem. 2017;311:687–693. doi:10.1007/s10967-016-5053-5
Schetinskiy AV, Dedyukhin AS, Kharina EA, Volkovich VA, Yamshchikov LF. Activity coefficients of lanthanum in gallium and gallium-aluminum based alloys. J Alloys Compd. 2019;790:809–813. doi:10.1016/j.jallcom.2019.03.199
Boudraa S, Djaballah Y, Mansouri Y, Belgacem Bouzida A. Thermodynamic assessment of the Ga–La and Ga–Pr systems supported by ab-initio calculations. Calphad. 2022;76:102387. doi:10.1016/j.calphad.2021.102387
Smolenski VV, Novoselova AV, Bovet AL, Mushnikov PN. Sepa-ration Factors of La/U, Pr/U, and Nd/U in the Ga–In/3LiCl–2KCl molten system. Russ Metall. 2020;2020:112–114. doi:10.1134/S0036029520020135
Liu K, Liu YL, Chai ZF, Shi WQ. Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Sep Purif Technol. 2021;265:118524. doi:10.1016/j.seppur.2021.118524
Usov PM, Saltykova EA. Termodinamika obrazovaniya hloridov galliya v rasplave. [Thermodynamics of the formation of galli-um chlorides in the melt]. Rasplavy. 1987;1(3):110–113.
Tokarev OV, Volkovich VA, Ryzhov AA, Maltsev DS. Electrode potentials of gallium in fused alkali chlorides. ECS Trans. 2022z109(14):197–204. doi:10.1149/10914.0197ecst
Tokarev OV, Maltsev DS, Volkovich VA. Electrochemical proper-ties of gallium in molten alkali metal chlorides. AIP Con Proc. 2020; 313: 020005. doi:10.1063/5.0032401
DOI: https://doi.org/10.15826/chimtech.2023.10.4.16
Copyright (c) 2023 Oleg V. Tokarev, Volkovich A. Vladimir
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International