Cover Image

Anodic dissolution of gallium in alkali metal chloride melts

Oleg V. Tokarev, Vladimir A. Volkovich

Abstract


Gallium and gallium based alloys can be potentially used in pyrochemical and pyroelectrochemical reprocessing of spent nuclear fuels, particularly for separating actinides and rare earth fission products. However, the electrochemical behavior of gallium in high temperature molten salt electrolytes is very little studied. The present work was aimed at investigating the processes taking place during anodic dissolution of gallium in fused alkali chlorides (the ternary 6NaCl–9KCl–5CsCl eutectic mixture) and determining the ratio of gallium chloro-species in different oxidation states formed and remained in the melt. The experiments were performed between 550 and 750 °C, and the anodic current density varied from 0.024 to 0.094 A/cm2. Anodic polarization and coulometry were used, and the results obtained demonstrated that two gallium species, Ga(I) and Ga(III), were formed as a result of gallium anodic dissolution. The ratio between these two oxidation states depended on temperature and anodic current density. The method of processing the experimental data and the calculated values of the ratio of gallium ionic forms in the system under various conditions are presented.

Keywords


anodic dissolution; gallium; chloride melts; gallium chlorides; anodic polarization

Full Text:

PDF

References


Wilson PD. The Nuclear Fuel Cycle: from Ore to Wastes. Ox-ford University Press: Oxford; 1996. 323 p.

Nawada HP, Fukuda K. Role of pyrochemical processes in advanced fuel cycles. J Phys Chem Solids. 2005;66:647. doi:10.1016/j.jpcs.2004.07.022

Mendes E, Conocar O, Laplace A, Douyere N, Miguirditchian M. Study of innovative chemical processes for sodium fast re-actor fuel assemblies cleaning. Procedia Chem. 2012;7:791. doi:10.1016/j.proche.2012.10.120

Mirza M, Abdulaziz R, Maskell WC, Wilcock S, Jones AH, Woodall S, Jackson A, Shearing PR, Brett DJL. Electrochemical processing in molten salts – a nuclear perspective. Energy En-viron Sci. 2023;16:952. doi:10.1039/d2ee02010f

Ignatiev V, Feynberg O, Gnidoi I, Konakov S, Kormilitsyn M, Merzliakov A, Surenkov A, Uglov V, Zagnitko A. MARS: Story on molten salt actinide recycler and transmuter development by Rosatom in co-operation with Euratom in Actinide and Fission Product Partitioning and Transmutation. Thirteenth Infor-mation Exchange Meeting, Nuclear Science NEA/NSC/R. 2015;2:92–103.

Allibert M, Delpech S, Gerardin D, Heuer D, Laureau A, Merlea E. Homogeneous molten salt reactors (MSRs): The molten salt fast reactor (MSFR) concept. Handbook of Generation IV Nu-clear Reactors: Pioro IL. Woodhead Publishing: Sawston; 2016. 231–257 pp.

Serp J, Allibert M, Benes O, Delpech S, Feynberg O, Ghetta V, Heuer D, Holcomb D, Ignatiev V, Kloosterman JL, Luzzi L, Merle-Lucotte E, Uhlír J, Yoshioka R, Zhimin D. The molten salt reactor (MSR) in generation IV: Overview and perspec-tives. Prog Nucl Energy. 2014;77:308.

Bychkov AV, Skiba OV. Review of non-aqueous nuclear fuel reprocessing and separation methods. Chem Sep Technol Re-lated Methods Nuclear Waste Manag. 1999:71–98.

Inoue T, Sakamura Y. Pyrochemistry in nuclear industry. Mol-ten Salts: From Fundamentals to Applications. 2002:249–261.

Jiang D, Zhang D, Li X, Wang S, Wang C, Qin H, Guo Y, Tian W, Su GH, Qiu S. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook. Renewable Sustain Energy Rev. 2022;161. doi:10.1016/j.rser.2022.112345

Morgan LG, Burger LL, Scheele RD. Molten salt oxidation-reduction processes for fuel processing. Actinide SepACS Sym-posium Ser. 1979;117:233–252.

Brambilla G, Facchini AG. U-Pu recovery by molten alkaline sulphates. Radiochim. Acta. 1984;36:37.

Griffiths TR, Volkovich VA, Yakimov SM, May I, Sharrad CA, Charnock JM. Reprocessing spent nuclear fuel using molten carbonates and subsequent precipitation of rare earth fission products using phosphate. J Alloys Comp. 2006;418:116–121.

Volkovich, VA, Maltsev DS, Raguzina EV, Dedyukhin AS, Shchetinskiy AV, Yamshchikov LF, Chukin AV. Thermodynam-ics of rare earth elements and uranium in gallium based qua-ternary metallic alloys. J Alloys Compd. 2019787:367–378. doi:10.1016/j.jallcom.2019.02.081

Xu H, Zhang W, Wang C, Yang M, Yan T, Yan Y, Zhang M. Mol-ten salt/liquid metal extraction: electrochemical behaviors and thermodynamics properties of La, Pr, U and separation factors of La/U and Pr/U couples in liquid gallium cathode. Appl Ra-diat Isot. 2022;182. doi:10.1016/j.apradiso.2022.110149

Liu K, Chai ZF, Shi WQ. Liquid Electrodes for An/Ln separa-tion in pyroprocessing. J Electrochem Soc. 2021;168. doi:10.1149/1945-7111/abec99

Volkovich VA, Maltsev DS, Melchakov SY, Yamshchikov LF, Novoselova AV, Smolensky VV. Separation of lanthanides and actinides in a chloride melt - liquid metal system: the effect of phase composition. ECS Trans. 2016;75:397–408. doi:10.1149/07515.0397ecst

Dedyukhin AS, Shchetinskiy AV, Kharina EA, Shchepin IE, Volkovich VA, Yamshchikov LF, Osipenko AG. Electrochemical and thermodynamic properties of lanthanum in a chloride melt - liquid metal system. ECS Trans. 2016;75:265–274. doi:10.1149/07515.0265ecst

Smolenski V, Novoselova A, Osipenko A, Maershin A. Thermo-dynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Elec-trochim Acta. 2014;145:81–85. doi:10.1016/j.electacta.2014.08.081

Smolenski V, Novoselova A, Volkovich VA. Thermodynamics of La and U and the separation factor of U/La in fused Me(Ga-40 wt.% In)/3LiCl-2KCl system. J Nucl Mater. 2017;495:285–290. doi:10.1016/j.jnucmat.2017.08.017.

Novoselova A, Smolenski V, Volkovich VA, Luk’yanova Y. Ther-modynamic properties of ternary Me-Ga-In (Me = La, U) al-loys in a fused Ga-In/LiCl-KCl system. J Chem Thermodyn. 2019;130:228–234. doi:10.1016/j.jct.2018.10.014

Novoselova A, Smolenski V, Volkovich VA, Ivanov AB, Osipenko A, Griffiths TR. Thermodynamic properties of La–Ga–Al and U–Ga–Al Alloys and the separation factor of U/La couple in the molten salt–liquid metal system. J Nucl Mater. 2015;466:373–378. doi:10.1016/j.jnucmat.2015.08.010

Dedyukhin AS, Kharina EA, Raguzina EV, Maltsev DS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF. Solubility of lanthanum and uranium in Ga–In and Ga–Al eutectic based al-loys. AIP Conf Proc. 2018;2015:020019. doi:10.1063/1.5055092

Volkovich VA, Maltsev DS, Yamshchikov LF, Osipenko AG. Thermodynamic properties of uranium in liquid gallium, indi-um and their alloys. J Nucl Mater. 2015;464:263–269. doi:10.1016/j.jnucmat.2015.04.054

Dedyukhin AS, Shchetinskiy AV, Volkovich VA, Yamshchikov LF, Osipenko AG. Lanthanum activity, activity coefficients and sol-ubility in gallium-indium liquid alloys. ECS Trans. 2014;64:227–234. doi:10.1149/06404.0227ecs

Shchetinskiy AV, Dedyukhin AS, Volkovich VA, Yamshchikov LF, Maisheva AI, Osipenko AG, Kormilitsyn MV. Thermodynamic properties of lanthanum in gallium–indium eutectic based al-loys. J Nucl Mater. 2013;435:202–206. doi:10.1016/j.jnucmat.2012.12.035

Dedyukhin AS, Shepin IE, Kharina EA, Shchetinskiy A V, Volkovich VA, Yamshchikov LF. Thermodynamic properties of lanthanum in gallium–zinc alloys. AIP Conf Proc. 2016;1767:020006. doi:10.1063/1.4962590

Novoselova A, Smolenski V. The influence of the temperature and ga-in alloy composition on the separation of uranium from neodymium in molten Ga-In/3LiCl-2KCl system during the re-cycling of high-level waste. J Nucl Mater. 2018;509:313–317. doi:10.1016/j.jnucmat.2018.06.040

Smolenski V, Novoselova A, Osipenko A, Kormilitsyn M, Luk’Yanova Y. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochim Acta. 2014;133:354–358. doi:10.1016/j.electacta.2014.04.042

Smolenski V, Novoselova A, Volkovich V, Luk’yanova Y, Osipen-ko A, Bychkov A, Griffiths TR. The Effect of Al Concentration on thermodynamic properties of Nd and U in Ga–Al-based al-loys and the separation factor of Nd/U couple in a “molten salt-liquid metal system”. J Radioanal Nucl Chem. 2017;311:687–693. doi:10.1007/s10967-016-5053-5

Schetinskiy AV, Dedyukhin AS, Kharina EA, Volkovich VA, Yamshchikov LF. Activity coefficients of lanthanum in gallium and gallium-aluminum based alloys. J Alloys Compd. 2019;790:809–813. doi:10.1016/j.jallcom.2019.03.199

Boudraa S, Djaballah Y, Mansouri Y, Belgacem Bouzida A. Thermodynamic assessment of the Ga–La and Ga–Pr systems supported by ab-initio calculations. Calphad. 2022;76:102387. doi:10.1016/j.calphad.2021.102387

Smolenski VV, Novoselova AV, Bovet AL, Mushnikov PN. Sepa-ration Factors of La/U, Pr/U, and Nd/U in the Ga–In/3LiCl–2KCl molten system. Russ Metall. 2020;2020:112–114. doi:10.1134/S0036029520020135

Liu K, Liu YL, Chai ZF, Shi WQ. Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Sep Purif Technol. 2021;265:118524. doi:10.1016/j.seppur.2021.118524

Usov PM, Saltykova EA. Termodinamika obrazovaniya hloridov galliya v rasplave. [Thermodynamics of the formation of galli-um chlorides in the melt]. Rasplavy. 1987;1(3):110–113.

Tokarev OV, Volkovich VA, Ryzhov AA, Maltsev DS. Electrode potentials of gallium in fused alkali chlorides. ECS Trans. 2022z109(14):197–204. doi:10.1149/10914.0197ecst

Tokarev OV, Maltsev DS, Volkovich VA. Electrochemical proper-ties of gallium in molten alkali metal chlorides. AIP Con Proc. 2020; 313: 020005. doi:10.1063/5.0032401




DOI: https://doi.org/10.15826/chimtech.2023.10.4.16

Copyright (c) 2023 Oleg V. Tokarev, Volkovich A. Vladimir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International