Decomposition of light hydrocarbons on a Ni-containing glass fiber catalyst
Abstract
Keywords
Full Text:
PDFReferences
Parkinson B, Tabatabaei M, Upham DC, Ballinger B, Greig C, Smart S, McFarland E. Hydrogen production using me-thane: Techno-economics of decarbonizing fuels and chem-icals. Int J Hydrog Energy. 2018;43:2540–2555. doi:10.1016/j.ijhydene.2017.12.081
Qian JX et al. Methane decomposition to produce CO -free hydrogen and nano-carbon over metal catalysts: A review. 2020. Int J Hydrog Energy;45:7981–8001. doi:10.1016/j.ijhydene.2020.01.052
Global Hydrogen Review 2021. Int Energy Agency. 2021. https://iea.blob.core.windows.net/assets/3a2ed84c-9ea0-458c-9421-d166a9510bc0/GlobalHydrogenReview2021.pdf
Abbas HF, Wan Mohd WD. Hydrogen production by methane decomposition: A review. Int J Hydrog Energy. 2010;35:1160–1190. doi:10.1016/j.ijhydene.2009.11.036
Popov MV, Zazhigalov SV, Larina TV, Cherepanova SV, Ban-nov AG, Lopatin SA, Zagoruiko AN. Glass fiber supports modified by layers of silica and carbon nanofibers. Catalysis Sustain Energy. 2017;4(1):1–6. doi:10.1515/cse-2017-0001
Khudaish EA, Al-Badri A. A modified Hummers soft oxida-tive method for functionalization of CNTs: Preparation, characterization and potential application for selective de-termination of norepinephrine. Synth Met. 2021;277:116803. doi:10.1016/j.synthmet.2021.116803
Shibaev A, Yusin S, Maksimovskii E, Ukhina A, Bannov AG. Chemical treatment of graphite nanoplatelets and their use in supercapacitors. Russ J Appl Chem. 2016;89(5):739–745. doi:10.1134/S1070427216050098
Uvarov NF, Mateyshina YG, Ulihin A, Yusin S, Varentsova V, Varentsov V. Surface electrochemical treatment of car-bon materials for supercapacitors. ECS Meet Abstr. 2009;37:2817–2817. doi:10.1149/1.3299286
Sysoev VI, Gusel’nikov AV, Katkov MV, Asanov IP, Bu-lusheva LG, Okotrub AV. Sensor properties of electron beam irradiated fluorinated graphite. J Nanophotonics. 2015;10:012512. doi:10.1117/1.jnp.10.012512
Rakow EG. Nanotubes and fullerens. M: Logos; 2006. 376 p.
Brester AE, Golovakhin VV, Novgorodtseva ON, Lapekin NI, Shestakov AA, Ukhina AV, et al. Chemically treated carbon nanofiber materials for supercapacitors. Dokl Chem. 2021;501:264–269. doi:10.1134/s0012500821120016
Bannov AG, Prášek J, Jašek O, Zajíčková L. Investigation of pristine graphite oxide as room-temperature chemiresis-tive ammonia gas sensing material. Sensors. 2017;17. doi:10.3390/s17020320
Liu S, Wang Z, Zhang Y, Zhang C, Zhang T. High perfor-mance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sensors Actuators B Chem. 2015;211:318–324. doi:10.1016/j.snb.2015.01.127
Li L, He S, Liu M, Zhang C, Chen W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87:1638–1645. doi:10.1021/ac503234e
Baranov DV, Zagoruiko AN, Zazhigalov SV, Lopatin SA, Mikenin PE, Pisarev DA, Popov MV. Microfiber catalyst or carrier for catalysts and method for preparing the same. Pa-tent RF 2624216. 2017 July 03.
Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA. Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Appl Catalysis A Gen. 2003;247:51–63. doi:10.1016/S0926-860X(03)00080-2
Soloviov EA, Kuvshinov GG. Influence of the catalyst com-position on the process of hydrogen production by selective catalytic pyrolysis of propane. Al’ternativnaya Energetika I Ekologiya. 2011;10:127–132.
Tursuniva NG, Musulmanov NKh, Faizullaev NI, Ikramov A. Obtaining nanocarbon and hydrogen by catalytic decompo-sition of low molecular weight hydrocarbons. Universum: khim. biol. 2023;103:43-52 (in Russian)
Zagoruiko AN, Bal'zhinimaev BS. Kataliticheskie protsessy na osnove steklovoloknistykh katalizatorov [Katalitichesky processes on the basis of glass-fiber catalysts]. Khimich-eskaya promyshlennost' segodnya – Chemical Industry To-day. 2011;2:5–11. (In Russian)
Zagoruiko AN, Lopatin SA, Bal’zhinimaev BS, Gil’mutdinov NR, Sibagatullin GG, Pogrebtsov VP, Nazmieva IF. The pro-cess for catalytic incineration of waste gas on IC-12-S102 platinum glass fiber catalyst. Catalysis Industry. 2010;2(2):113–117.
Balzhinimaev BS, Paukshtis EA, Vanag SV, Suknev AP, Zago-ruiko AN. Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection. Catalysis Today. 2010;151(1–2):195–199. doi:10.1016/j.cattod.2010.01.011
Shinkarev VV, Glushenkov AM, Kuvshinov DG, Kuvshinov GG New effective catalysts based on mesoporous nano-fibrous carbon for selective oxidation of hydrogen sulfide. Applied Catalysis B: Environmental. 2009;85:180–191. doi:10.1016/j.apcatb.2008.07.011
Kuvshinov DG, Kurmashov PB, Bannov AG, Popov MV, Kuvshinov GG. Synthesis of Ni-based catalysts by hexa-methylenetetramine-nitrates solution combustion method for co-production of hydrogen and nanofibrous carbon from methane. Int J Hydrogen Energy. 2019;44(31):16271–16286. doi:10.1016/j.ijhydene.2019.04.179
DOI: https://doi.org/10.15826/chimtech.2023.10.3.06
Copyright (c) 2023 M.V. Popov, M.V. Chudakova, P.B. Kurmashov, A.G. Bannov, A.V. Kleimenov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International