Cover Image

Characterization and potential applications of silver nanoparticles: an insight on different mechanisms

Anton N. Kodintcev

Abstract


In the 21st century, a great interest is devoted to biomedical application of various nanoparticles, particularly, as a means of improving the effectiveness of therapy for different diseases. Silver nanoparticles (AgNPs) are the most studied and investigated type of nanoparticles. Due to the wide spectrum of their action, silver nanoparticles may be used both to influence pathogenic microorganisms and to improve the treatment of cancer. The basic physico-chemical characteristics and stabilizing agents play an important modifying role in the pharmacokinetics and pharmacodynamics of nanoparticles, determining the severity of the caused effect and their potential toxicity. This review summarizes the main physico-chemical properties of AgNPs and their impact on the biological effects. Additionally, biochemical and pathophysiological mechanisms of silver nanoparticles activity against various microorganisms and tumor cells are considered. Finally, we address the problems, associated with determining the optimal characteristics of nanoparticles, in order to increase their efficiency and reduce their toxicity for the macroorganism.

Keywords


silver nanoparticles; physicochemical properties; biological effects; toxicity

Full Text:

PDF

References


Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595–601. doi:10.1016/j.drudis.2014.11.014

Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):E1534. doi:10.3390/ijms17091534

Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi:10.7150/thno.45413

Marin S, Vlascean GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM. Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem. 2015;15(16):1596–1604. doi:10.2174/1568026615666150414142209

Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–530. doi:10.18388/abp.2013_2016

Tăbăran A-F, Matea CT, Mocan T, Tăbăran A, Mihaiu M, Iancu C, Mocan L. Silver nanoparticles for the therapy of tuberculosis. Int J Nanomed. 2020;15:2231–2258. doi:10.2147/IJN.S241183

Fakhruddin KS, Egusa H, Ngo HC, Panduwawala C, Pesee S, Samaranayake LP. Clinical efficacy and the antimicrobial potential of silver formulations in arresting dental caries: a systematic review. BMC Oral Health. 2020;20(1):160. doi:10.1186/s12903-020-01133-3

Qaralleh H, Khleifat KM, Al-Limoun MO, Alzedaneen FY, Al-Tawarah N. Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi tritirachium oryzae W5H with essential oil of centaurea damascena to enhance conventional antibiotics activity. Adv Nat Sci Nanosci Nanotechnol. 2019;10:025016. doi:10.1088/2043-6254/ab2867

Kaur A, Preet S, Kumar V, Kumar R, Kumar R. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids Surf B Biointerfaces. 2019;176:62–69. doi:10.1016/j.colsurfb.2018.12.043

Hussein EAM, Mohammad AA-H, Harraz FA, Ahsan MF. Biologically synthesized silver nanoparticles for enhancing tetracycline activity against staphylococcus aureus and klebsiella pneumoniae. Braz Arch Biol Technol. 2019;62. doi:10.1590/1678-4324-2019180266

Saha S, Malik MM, Qureshi MS. Study of synergistic effects of antibiotics and triangular shaped silver nanoparticles, synthesized using uv-light irradiation, on s. aureus and p. aeruginosa. Mater Today Proceed. 2019;18:920–927. doi:10.1016/j.matpr.2019.06.525

Farjadian F, Akbarizadeh AR, Tayebi L. Synthesis of novel reducing agent for formation of metronidazolecapped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon. 2020;6(8):e04747. doi:10.1016/j.heliyon.2020.e04747

Gherasim O, Puiu RA, Bîrcă AC, Burdușel A-C, Grumezescu AM. An updated review on silver nanoparticles in biomedicine. Nanomater. 2020;10(11):2318. doi:10.3390/nano10112318

Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Mol. 2015:20(5):8856–8874. doi:10.3390/molecules20058856

Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater. 2018:8(9):E681. doi:10.3390/nano8090681

Lubojanski A, Dobrzynski M, Nowak N, Rewak-Soroczynska J, Sztyler K, Zakrzewski W, Dobrzynski W, Szymonowicz M, Rybak Z, Wiglusz K, Wiglusz RJ. Application of selected nanomaterials and ozone in modern clinical dentistry. Nanomater. 2021;11(2):259. doi:10.3390/nano11020259

Guilger-Casagrande M, de Lima R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi:10.3389/fbioe.2019.00287

Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts. 2021;11:902. doi:10.3390/catal11080902

Li W-R, Sun T-L, Zhou S-L, Ma Y-K, Shi Q-S, Xie X, Huang X-M. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterior Biodegradation. 2017;123. doi:10.1016/j.ibiod.2017.07.015

Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Mol. 2011;16(10):8894–8918. doi:10.3390/molecules16108894

Wei Q-Y, He K-M, Chen J-L, Xu Y-M, Lau ATY. Phytofabrication of nanoparticles as novel drugs for anticancer applications. Mol. 2019;24(23):4246. doi:10.3390/molecules24234246

Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, Cajero-Juárez M, Castaño VM. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomed. 2012;7:4777–4786. doi:10.2147/IJN.S32391

Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71. doi:10.1038/s41565-017-0013-y

Asadishad B, Hidalgo G, Tufenkji N. Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic escherichia coli strain CFT073. FEMS Microbiol Lett. 2012;334(2):87–94. doi:10.1111/j.1574-6968.2012.02622.x

Baethge C, Goldbeck-Wood S, Mertens S. SANRAa scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4:5. Published 2019 Mar 26. doi:10.1186/s41073-019-0064-8

Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2013;4(8):3974–3983. doi:10.1039/C3RA44507K

Baker C, Pradhan A, Pakstis L, Pochan D, Shah S. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5:244–249. doi:10.1166/jnn.2005.034

Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nanosilver colloids. Environ Sci Technol. 2010;44(6):2169–2175. doi:10.1021/es9035557

Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44(14):5649–5654. doi:10.1021/es101072s

Dobias J, Bernier-Latmani R. Silver release from silver nanoparticles in natural waters. Environ Sci Technol. 2013;47(9):4140–4146. doi:10.1021/es304023p

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005;16(10):2346–2353. doi:10.1088/0957-4484/16/10/059

Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces. 2013;102:300–306. doi:10.1016/j.colsurfb.2012.07.039

Bélteky P, Rónavári A, Zakupszky D, Boka E, Igaz N, Szerencsés B, Pfeiffer I, Vágvölgyi C, Kiricsi M, Kónya Z. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int J Nanomed. 2021;16:3021–3040. doi:10.2147/IJN.S304138

Levard C, Hotze EM, Lowry GV, Brown GE. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46(13):6900–6914. doi:10.1021/es2037405

Ringe E, Zhang J, Langille M, Mirkin C, Marks L, Duyne R. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. Nanotechnol. 2012;23:444005. doi:10.1088/0957-4484/23/44/444005

Liu G, Eichelsdoerfer DJ, Rasin B, Zhou Y, Brown KA, Liao X, Mirkin CA. Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proceed Nat Acad Sci. 2013;110(3):887–891. doi:10.1073/pnas.1220689110

Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res. 2007;40(10):1067–1076. doi:10.1021/ar7000974

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A Study of the gram-negative bacterium escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi:10.1128/AEM.02218-06

Cheon JY, Kim SJ, Rhee YH, Kwon OH, Park WH. Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomed. 2019;14:2773–2780. doi:10.2147/IJN.S196472

Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer TA, Köller M, Epple M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016;6(22):18490–18501. doi:10.1039/C5RA27836H

Alshareef A, Laird K, Cross RBM. Shape-dependent antibacterial activity of silver nanoparticles on escherichia coli and enterococcus faecium bacterium. Appl Surf Sci. 2017;424:310–315. doi:10.1016/j.apsusc.2017.03.176

Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. 2019;20(4):865. doi:10.3390/ijms20040865

Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res. 2016;88:403–427. doi:10.1016/j.watres.2015.10.025

Mackay ME, Dao TT, Tuteja A, Ho DL, van Horn B, Kim H-C, Hawker CJ. Nanoscale effects leading to non-einstein-like decrease in viscosity. Nat Mater. 2003;2(11):762–766. doi:10.1038/nmat999

Zhang W, Yao Y, Li K, Huang Y, Chen Y. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut. 2011;159(12):3757–3762. doi:10.1016/j.envpol.2011.07.013

Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–16253. doi:10.1021/jp063826h

Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, Yang Z, Gao F, Zeng M. Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res Lett. 2020;15(1):14. doi:10.1186/s11671-019-3244-z

Ugwoke E, Aisida SO, Mirbahar AA, Arshad M, Ahmad I, Zhao T, Ezema FI. Concentration induced properties of silver nanoparticles and their antibacterial study. Surf Interfaces. 2020;18:100419. doi:10.1016/j.surfin.2019.100419

Ajitha B, Reddy YAK, Reddy PS, Jeon H-J, Ahn CW. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv. 2016;6(42):36171–36179. doi:10.1039/C6RA03766F

Li Y, Zhang W, Niu J, Chen Y. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol. 2013;47(18):10293–10301. doi:10.1021/es400945v

Kim KD, Han D, Kim H. Optimization of experimental conditions based on the taguchi robust design for the formation of nanosized silver particles by chemical reduction method. 2004. doi:10.1016/J.CEJ.2004.08.003

Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34. doi:10.1016/j.cis.2013.12.002

Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet JM, Vallet-Regi M, Köller M, Epple M. The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B. 2014;2(12):1634–1643. doi:10.1039/C3TB21569E

Mitra C, Gummadidala M, Afshinnia K, Merrifield RC, Baalousha M, Lead JR, Chanda A. Citrate-coated silver nanoparticles growth-independently inhibit aflatoxin synthesis in aspergillus parasiticus. Environ Sci Technol. 2017;51(14):8085–8093. doi:10.1021/acs.est.7b01230

Shrivas K, Sahu B, Deb MK, Thakur SS, Sahu S, Kurrey R, Kant T, Patle TK, Jangde R. Colorimetric and paper-based detection of lead using pva capped silver nanoparticles: experimental and theoretical approach. Microchem J. 2019;150. doi:10.1016/j.microc.2019.104156

Rezaei H, Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. A colorimetric nanoprobe based on dynamic aggregation of sds-capped silver nanoparticles for tobramycin determination in exhaled breath condensate. Microchim Acta. 2020;187. doi:10.1007/s00604-020-4162-6

Kamarudin D, Hashim NA, Ong BH, Che Hassan CR, Abdul Manaf N. Synthesis of silver nanoparticles stabilised by pvp for polymeric membrane application: a comparative study. Mat Technol. 2022;37(5):289–301. doi:10.1080/10667857.2021.1908768

Kubo A-L, Capjak I, Vrček IV, Bondarenko OM, Kurvet I, Vija H, Ivask A, Kasemets K, Kahru A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria escherichia coli and staphylococcus aureus. Colloids Surf B Biointerfaces. 2018;170:401–410. doi:10.1016/j.colsurfb.2018.06.027

Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J, Chung KF, Tetley TD, Porter AE, Ryan MP. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol. 2013;47(19):11232–11240. doi:10.1021/es403377p

Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112(15):5825–5834. doi:10.1021/jp711616v

Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673–2702. doi:10.1039/C8RA08982E

Tripathi RM, Chung SJ. Biogenic nanomaterials: synthesis, characterization, growth mechanism, and biomedical applcations. J Microbiol Method. 2019;157:65–80. doi:10.1016/j.mimet.2018.12.008

Hamouda RA, Hussein MH, Aboelmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium oscillatoria limnetica. Sci Rep. 2019;9(1):13071. doi:10.1038/s41598-019-49444-y

Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16(1):14. doi:10.1186/s12951-018-0334-5

Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B Biointerfaces. 2009;71(1):113–118. doi:10.1016/j.colsurfb.2009.01.012

Loo, Y. Y, Chieng, B. W, Nishibuchi, M, Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from camellia sinensis. Int J Nanomed. 2012;7:4263–4267. doi:10.2147/IJN.S33344

Rai M, Bonde S, Golinska P, et al. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. J Fungi (Basel). 2021;7(2):13915. doi:10.3390/jof7020139

Konappa N, Udayashankar AC, Dhamodaran N, Krishnamurthy S, Jagannath S, Uzma F, Pradeep CK, De Britto S, Chowdappa S, Jogaiah S. Ameliorated antibacterial and antioxidant properties by trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomol. 2021;11(4):535. doi:10.3390/biom11040535

Cheng F, Betts JW, Kelly SM, Hector AL. Green Synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets. Mater Sci Eng C Mater Biol Appl. 2015;46:530–537. doi:10.1016/j.msec.2014.10.041

Skiba MI, Vorobyova VI, Pivovarov A, Makarshenko NP. Green synthesis of silver nanoparticles in the presence of polysaccharide: optimization and characterization. J Nanomat. 2020;e3051308. doi:10.1155/2020/3051308

Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem. 2020;99:348–356. doi:10.1016/j.procbio.2020.09.011

Muhammad Tahir H, Saleem F, Ali S, Ain Q, Fazal A, Summer M, Mushtaq R, Tariq Zahid M, Liaqat I, Murtaza G. Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity. J Basic Microbiol. 2020;60(5):458–467. doi:10.1002/jobm.201900567

Azócar MI, Alarcón R, Castillo A, Blamey JM, Walter M, Paez M. Capping of silver nanoparticles by antiinflammatory ligands: antibacterial activity and superoxide anion generation. J Photochem Photobiol B. 2019;193:100–108. doi:10.1016/j.jphotobiol.2019.02.005

Lee, K. J, Browning, L. M, Nallathamby, P. D, Xu, X.-H. N. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol. 2013;26(6):904–917. doi:10.1021/tx400087d

Abbaszadegan A, Ghahramani Y, Gholami A, Hemma-teenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomat. 2015;e720654. doi:10.1155/2015/720654

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. cold spring harbor perspectives in biology. 2010;2(5). doi:10.1101/cshperspect.a000414

El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–287. doi:10.1021/es1034188

Qiao Z, Yao Y, Song S, Yin M, Luo J. Silver nanoparticles with ph induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem B. 2019;7(5):830–840. doi:10.1039/C8TB02917B

Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanoparticle Res. 2011;13:233–244. doi:10.1007/s11051-010-0022-3

Zhou W, Liu Y-L, Stallworth AM, Ye C, Lenhart JJ. Effects of pH, electrolyte, humic acid, and light exposure on the longterm fate of silver nanoparticles. Environ Sci Technol. 2016;50(22):12214–12224. doi:10.1021/acs.est.6b03237

McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116–127. doi:10.1016/j.jfda.2014.01.010

Bélteky P, Rónavári A, Igaz N, Szerencsés B, Tóth IY, Pfeiffer I, Kiricsi M, Kónya Z. Silver nanoparticles: aggregation behavior in biorelevant conditions and its impact on biological activity. Int J Nanomed. 2019;14:667–687. doi:10.2147/IJN.S185965

Gorshkov V, Bubis JA, Solovyeva EM, Gorshkov MV, Kjeldsen F. Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environ Sci Nano. 2019;6(4):1089–1098. doi:10.1039/C8EN01054D

Schöttler S, Landfester K, Mailänder V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl. 2016;55(31):8806–8815. doi:10.1002/anie.201602233

Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Nat Acad Sci USA. 2008;105(38):14265–14270. doi:10.1073/pnas.0805135105

Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, BierC, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–7167. doi:10.1021/nn201950e

Tai J-T, Lai C-S, Ho H-C, Yeh Y-S, Wang H-F, Ho R-M, Tsai D-H. Protein-silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir. 2014;30(43):12755–12764. doi:10.1021/la5033465

Alarcon E, Bueno-Alejo C, Noel C, Stamplecoskie K, Pacioni N, Poblete H, Scaiano JC. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanoparticle Res. 2013;15:1–14. doi:10.1007/s11051-012-1374-7

Bhargava A, Dev A, Mohanbhai SJ, Pareek V, Jain N, Choudhury SR, Panwar J, Karmakar S. Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. Sci Total Environ. 2021;772:144797. doi:10.1016/j.scitotenv.2020.144797

Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, Cohen Y, Emili A, Chan WCW. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8(3):2439–2455. doi:10.1021/nn406018q

Fernando I, Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere. 2019;216:297–305. doi:10.1016/j.chemosphere.2018.10.122

Sivera M, Kvitek L, Soukupova J, Panacek A, Prucek R, Vecerova R, Zboril R. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLOS ONE. 2014;9(8):e103675. doi:10.1371/journal.pone.0103675

Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L, Hu Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res. 2009;43(7):1879–1886. doi:10.1016/j.watres.2009.01.029

Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009;43(17):4249–4257. doi:10.1016/j.watres.2009.06.005

Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ. 2013;454–455:119–131. doi:10.1016/j.scitotenv.2013.02.093

Harmon AR, Kennedy AJ, Poda AR, Bednar AJ, Chappell MA, Steevens JA. Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Environ Toxicol Chem. 2014;33(8):1783–1791. doi:10.1002/etc.2616

Fan X, Yahia L, Sacher E. Antimicrobial properties of the ag, cu nanoparticle system. Biol. 2021;10(2):137. doi:10.3390/biology10020137

Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomater. 2020;10(8):1566. doi:10.3390/nano10081566

Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, Bog-danchikova N, Vazquez-Duhalt R, Huerta-Saquero A. En-hancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One. 2019;14(11):e0224904. doi:10.1371/journal.pone.0224904

Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, Ou-Yang Y-S, Chen Y-B. Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia Coli. Appl Microbiol Biotechnol 2010, 85 (4), 1115–1122. doi:10.1007/s00253-009-2159-5

Akter M, Sikder MdT, Rahman MdM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2017;9:1–16. doi:10.1016/j.jare.2017.10.008

Qing Y, Cheng L, Ruiyan L, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13. doi:10.2147/IJN.S165125

Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7.

Kowalczyk P, Szymczak M, Maciejewska M, Laskowski Ł, Laskowska M, Ostaszewski R, Skiba G, Franiak-Pietryga I. All that glitters is not silver—a new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22:854. doi:10.3390/ijms22020854

Fanoro OT, Oluwafemi OS. Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles. Pharm. 2020;12(11):1044. doi:10.3390/pharmaceutics12111044

Lara H, Ayala-Nunez V, Ixtepan Turrent L, Rodríguez-Padilla C. Bactericidal effect of agnps against multidrugresistant bacteria. World J Microbiol Biotechnol. 2009;26:615–621. doi:10.1007/s11274-009-0211-3

Lee MJ, Lee SJ, Yun SJ, Jang J-Y, Kang H, Kim K, Choi I-H, Park S. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species. IJN. 2015;11:55–68. doi:10.2147/IJN.S94907

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. IJN. 2020;15:2555–2562. doi:10.2147/IJN.S246764

Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Health Mater. 2018;7(13):e1701503. doi:10.1002/adhm.201701503

Velusamy P, Su C-H, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SCB, Chen Y, Anbu P. Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One. 2016;11(6):e0157612. doi:10.1371/journal.pone.0157612

Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI, Cohen Y, Holden PA, Godwin HA. Toxicity mechanisms in escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8(1):374–386. doi:10.1021/nn4044047

Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and antifungal properties of silver nanoparticles—effect of a surface-stabilizing agent. Biomol. 2021;11(10):1481. doi:10.3390/biom11101481

Haytham MM Ibrahim. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiation Res Appl Sci. 2015;8(3):265–275. doi:10.1016/j.jrras.2015.01.007

Lv X, Wang P, Bai R, Cong Y, Suo S, Ren X, Chen C. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomater. 2014;35(13):4195–4203. doi:10.1016/j.biomaterials.2014.01.054

Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020;533(1):195–200. doi:10.1016/j.bbrc.2020.09.018

Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol. 2008;4(2):149–158. doi:10.1166/jbn.2008.012

Lu L, Sun R, Chen R, Hui C-K, Ho C-M, Luk J, Lau G, Che C-M. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy. 2008;13:253–262.

Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894-8918. doi:10.3390/molecules16108894

Kumar S, Nyodu R, Maurya VK, Saxena SK. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19). 2020 Apr 30:23–31. doi:10.1007/978-981-15-4814-7_3

Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed. 2013;8:4303–4314. doi:10.2147/IJN.S50070

Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl. 2020;112:110924. doi:10.1016/j.msec.2020.110924

Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, Nowak Z, Donten M, Celi-chowski G, Grobelny J, Krzyzowska M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLOS ONE. 2014;9(8):e104113. doi:10.1371/journal.pone.0104113

Mehrbod P, Motamed N, Tabatabaian M, Estyar R, Amini E, Shahidi M, Kheiri M. In vitro antiviral effect of “nanosilver” on influenza virus. DARU J Pharm Sci. 2009;17.

Lin Z, Li Y, Guo M, Xu T, Wang C, Zhao M, Wang H, Chen T, Zhu B. The inhibition of h1n1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 2017;7(2):742–750. doi:10.1039/C6RA25010F

Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int J Mol Sci. 2019;20(15):3620. doi:10.3390/ijms20153620

Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3(1):6. doi:10.1186/1477-3155-3-6

Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol. 2010;8(1):15. doi:10.1186/1477-3155-8-15

Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM. Interaction of silver nanoparticles with tacaribe Virus. J Nanobiotechnol. 2010;8(1):19. doi:10.1186/1477-3155-8-19

Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008;3(4):129–133. doi:10.1007/s11671-008-9128-2

El-Sheekh MM, El-Kassas HY. Algal production of nanosilver and gold: their antimicrobial and cytotoxic activities: a review. J Genetic Eng Biotechnol. 2016;14(2):299–310. doi:10.1016/j.jgeb.2016.09.008

Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020;15(1):819–839. doi:10.1515/biol-2020-0094

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broadspectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98(5):1951–1961. doi:10.1007/s00253-013-5473-x

Żarowska B, Koźlecki T, Piegza M, Jaros-Koźlecka K, Robak M. New look on antifungal activity of silver nanoparticles (AgNPs). Pol J Microbiol. 2019;68(4):515–525. doi:10.33073/pjm-2019-051

Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482–1484.

Suwan T, Khongkhunthian S, Okonogi S. Antifungal activity of polymeric micelles of silver nanoparticles prepared from psidium guajava aqueous extract. Drug Discoveries Therapeutics. 2019;13:62–69. doi:10.5582/ddt.2019.01024

Lotfali E, Toreyhi H, Makhdoomi Sharabiani K, Fattahi A, Soheili A, Ghasemi R, Keymaram M, Rezaee Y, Iranpanah S. Comparison of antifungal properties of gold, silver, and selenium nanoparticles against amphotericin bresistant candida glabrata clinical isolates. Avicenna J Medical Biotechnol. 2020;13(1):47–50. doi:10.18502/ajmb.v13i1.4578

Monteiro D, Silva S, Negri M, Gorup L, Camargo E, Oliveira R, Barros Barbosa D, Henriques M. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against candida albicans and candida glabrata biofilms. Lett Appl Microbiol. 2012;54:383–391. doi:10.1111/j.1472-765X.2012.03219.x

Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nanomedicine. 2018;13:2647-2663. doi:10.2147/IJN.S150648

Rónavári A, Igaz N, Gopisetty MK, et al. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine. 2018;13:695-703. doi:10.2147/IJN.S152010

Xu Y, Gao C, Li X, He Y, Zhou L, PangbG, Sun S. In Vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther. 2013;29(2):270–274. doi:10.1089/jop.2012.0155

Mussin JE, Roldán MV, Rojas F, Sosa M de los Á, Pellegri N, Giusiano G. Antifungal activity of silver nanoparticles in combination with ketoconazole against malassezia furfur. AMB Express. 2019;9:131. doi:10.1186/s13568-019-0857-7

Dilshad E, Bibi M, Sheikh NA, Tamrin KF, Mansoor Q, Maqbool Q, Nawaz M. Synthesis of functional silver nanoparticles and microparticles with modifiers and evaluation of their antimicrobial, anticancer, and antioxidant activity. J Funct Biomater. 2020;11(4):76. doi:10.3390/jfb11040076

Farrag HMM, Mostafa FAAM, Mohamed ME, Huseein EAM. Green biosynthesis of silver nanoparticles by aspergillus niger and its antiamoebic effect against allovahlkampfia spelaea trophozoite and cyst. Exp Parasitol. 2020;219:108031. doi:10.1016/j.exppara.2020.108031

Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomed. 2011;6:2705–2714. doi:10.2147/IJN.S23883

Fanti JR, Tomiotto-Pellissier F, Miranda-Sapla MM, et al. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop. 2018;178:46-54. doi:10.1016/j.actatropica.2017.10.027

Mayelifar K, Taheri AR, Sazgarnia A. Ultraviolet B efficacy in improving antileishmanial effects of silver nanoparticles. Iran J Basic Medical Sci. 2015;18:677–683. doi:10.1016/j.actatropica.2017.10.027

Vergara-Duque D, Cifuentes-Yepes L, Hincapie-Riaño T, Clavijo-Acosta F, Juez-Castillo G, Valencia-Vidal B. Effect of Silver Nanoparticles on the Morphology of Toxoplasma gondii and Salmonella braenderup. J Nanotechnol. 2020;2020:9483428. doi:10.1155/2020/9483428

Norouzi R, Ataei A, Hejazy M, Noreddin A, El Zowalaty ME. Scolicidal Effects of Nanoparticles Against Hydatid Cyst Protoscolices in vitro. Int J Nanomed. 2020;15:1095-1100. doi:10.2147/IJN.S228538

Azzam A, Saad A, Soliman M, Bayoumy A. Antiparasitic activity of silver and copper oxide nanoparticles against entamoeba histolytica and cryptosporidium parvum cysts. J Egyp Soc Parasitol. 2015;45:593–602. doi:10.12816/0017920

Costa IN, Ribeiro M, Silva Franco P, da Silva RJ, de Araújo TE, Milián ICB, Luz LC, Guirelli PM, Nakazato G, Mineo JR, Mineo TWP, Barbosa BF, Ferro EAV. Biogenic silver nanoparticles can control toxoplasma gondii infection in both human trophoblast cells and villous explants. Front Microbiol. 2020;11:623947. doi:10.3389/fmicb.2020.623947

Machado LF, Sanfelice RA, Bosqui LR, Assolini JP, Scandorieiro S, Navarro IT, Depieri Cataneo AH, Wowk PF, Nakazato G, Bordignon J, Pavanelli WR, Conchon-Costa I, Costa IN. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii rh strain in hela cells without inflammatory mediators induction. Exp Parasitol. 2020;211:107853. doi:10.1016/j.exppara.2020.107853

Gaafar MR, Mady RF, Diab RG, Shalaby TI. Chitosan and silver nanoparticles: promising antitoxoplasma agents. Exp Parasitol. 2014;143:30–38. doi:10.1016/j.exppara.2014.05.005

Adeyemi OS, Murata Y, Sugi T, Kato K. Inorganic nanoparticles kill toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int J Nanomed. 2017;12:1647–1661. doi:10.2147/IJN.S122178

Younis MS, Abououf EA, Ali AE, Abdelhady SM, Wassef RM. In Vitro effect of silver nanoparticles on blastocystis hominis. Int J Nanomed. 2020;15:8167–8173. doi:10.2147/IJN.S272532

Albalawi AE, Alanazi AD, Baharvand P, Sepahvand M, Mahmoudvand H. High potency of organic and inorganic nanoparticles to treat cystic echinococcosis: an evidence-based review. Nanomater. 2020;10(12):E2538. doi:10.3390/nano10122538

Nassef NE, Saad A-GE, Harba NM, Beshay EVN, Gouda MA, Shendi SS, Mohamed ASED. Evaluation of the therapeutic efficacy of albendazoleloaded silver nanoparticles against echinococcus granulosus infection in experimental mice. J Parasit Dis. 2019;43(4):658–671. doi:10.1007/s12639-019-01145-z

Said DE, Elsamad LM, Gohar YM. Validity of silver, chitosan, and curcumin nanoparticles as antigiardia agents. Parasitol Res. 2012;111(2):545–554. doi:10.1007/s00436-012-2866-1

Mnkandhla D, Marwijk J, Hoppe H, Wilhelmi BS, Whiteley CG. In vivo; in vitro interaction of silver nanoparticles with leucine aminopeptidase from human and plasmodium falciparum. J Nanosci Nanotechnol. 2018;18(2):865–871. doi:10.1166/jnn.2018.13966

Hendiger EB, Padzik M, Sifaoui I, Reyes-Batlle M, López-Arencibia A, Rizo-Liendo A, Bethencourt-Estrella CJ, Nicolás-Hernández DS, Chiboub O, Rodríguez-Expósito RL, Grodzik M, Pietruczuk-Padzik A, Stępień K, Olędzka G, Chomicz L, Piñero JE, Lorenzo-Morales J. Silver nanoparticles as a novel potential preventive agent against acanthamoeba keratitis. Pathogen. 2020;9(5):E350. doi:10.3390/pathogens9050350

Xie Y, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv. 2009;6(8):785–792. doi:10.1517/17425240903085128

Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46:115–126. doi:10.1080/21691401.2017.1414825

De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomater. 2018;8(5):319. doi:10.3390/nano8050319

Dejean L, Martinez-Caballero S, Kinnally K. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ. 2006;13:1387–1395. doi:10.1038/sj.cdd.4401949

Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, Alcocer-González JM, Miranda-Hernández DF, Tamez-Guerra R. S, Rodríguez-Padilla C. Antitumor activity of colloidal silver on mcf-7 human breast cancer cells. J Exp Clin Cancer Res. 2010;29(1):148. doi:10.1186/1756-9966-29-148

Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polym. 2021;13(19):3350. doi:10.3390/polym13193350

Packirisamy G, Gogoi S, Chattopadhyay A, Ghosh S. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnol. 2008;19:075104. doi:10.1088/0957-4484/19/7/075104

Abdel-Fattah W, Ghareib W. On the anticancer activities of silver nanoparticles. J Appl Biotechnol Bioeng. 2018;5. doi:10.15406/jabb.2018.05.00116

AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290. doi:10.1021/nn800596w

Ratan ZA, Haidere MF, Nurunnabi Md, Shahriar SMd, Ahammad AJS, Shim YY, Reaney MJT, Cho JY. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020;12(4):855. doi:10.3390/cancers12040855

Kemp M, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt R, Mousa S. Gold and silver nanoparticles conjugated with heparin derivative possess antiangiogenesis properties. Nanotechnol. 2009:20:455104. doi:10.1088/0957-4484/20/45/455104

Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom S. antiangiogenic properties of silver nanoparticles. Biomater. 2009;30:6341–6350. doi:10.1016/j.biomaterials.2009.08.008

Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang X-H. Silver nanoparticles inhibit the function of hypoxiainducible factoria1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomed. 2016;11:6679–6692. doi:10.2147/IJN.S109695

Sanpui P, Chattopadhyay A, Ghosh S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Materi Interfaces. 2011;3:218–228. doi:10.1021/am100840c

Barbalinardo M, Caicci F, Cavallini M, Gentili D. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast small. Nanomater. 2018;14(34):e1801219. doi:10.1002/smll.201801219

Cunningham B, Engstrom AM, Harper BJ, Harper SL, Mackiewicz MR. Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. Nanomater. 2021;11(6):1516. doi:10.3390/nano11061516

Ferreira LAB, Garcia-Fossa F, Radaic A, Durán N, Fávaro WJ, de Jesus MB. Biogenic silver nanoparticles: in vitro and in vivo antitumor activity in bladder cancer. Eur J Pharm Biopharm. 2020;151:162–170. doi:10.1016/j.ejpb.2020.04.012

Chen Y, Yang T, Chen S, Qi S, Zhang Z, Xu Y. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J Biochem Molec Toxicol. 2020;34(5):e22474. doi:10.1002/jbt.22474

Xiao H, Chen Y, Alnaggar M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron. 2019;126:102750. doi:10.1016/j.micron.2019.102750

Huy TQ, Huyen PTM, Le A-T, Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anticancer Agents Med Chem. 2020;20(11):1276–1287. doi:10.2174/1871520619666190710121727

Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031. doi:10.7150/thno.45413

Skonieczna M, Hudy D. Biological Activity of Silver Nanoparticles and Their Applications in Anticancer Therapy; IntechOpen, 2018. https://doi.org/10.5772/intechopen.77075.

Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1–11. doi:10.7508/ibj.2016.01.001

Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi:10.3390/ijms21072375

Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, Ahn K, Lee JE, Yu IJ. Biopersistence of silver nanoparticles in tissues from sprague–dawley rats. Particle Fibre Toxicol. 2013;10(1):36. doi:10.1186/1743-8977-10-36

Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One. 2017;12(9):e0185554. doi:10.1371/journal.pone.0185554

Kim K-T, Tanguay RL. The role of chorion on toxicity of silver nanoparticles in the embryonic zebrafish assay. Environ Health Toxicol. 2014;29:e2014021. doi:10.5620/eht.e2014021

Fewtrell L, Majuru B, Hunter PR. A reassessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies. Environ Health. 2017;16(1):66. doi:10.1186/s12940-017-0279-4

Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(6):704-725. doi:10.1080/10934529.2020.1735852

Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver nanoparticles. Environ Toxicol Pharmacol. 2015;40(3):729–732. doi:10.1016/j.etap.2015.09.003

Zou J, Feng H, Mannerström M, Heinonen T, Pyykkö I. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J Nanobiotechnol. 2014;12:52. doi:10.1186/s12951-014-0052-6

Almofti MR. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome. J Biochem. 2003;134(1):43–49. doi:10.1093/jb/mvg111

Cho Y-M, Mizuta Y, Akagi J, Toyoda T, Sone M, Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol. 2018;31(1):73–80. doi:10.1293/tox.2017-0043

Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomater. 2020;10(2):292. doi:10.3390/nano10020292

Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449. doi:10.3390/ijms20020449

Huang C-L, Hsiao I-L, Lin H-C, Wang C-F, Huang Y-J, Chuang C-Y. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res. 2015;136:253–263. doi:10.1016/j.envres.2014.11.006

Lin C-X, Yang S-Y, Gu J-L, Meng J, Xu H-Y, Cao J-M. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicol. 2017;11(6):827–837. doi:10.1080/17435390.2017.1367047

Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ. Lung Function changes in sprague-dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008;20(6):567–574. doi:10.1080/08958370701874671

Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115–170. doi:10.1016/bs.acr.2017.11.003

Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol. 2013;47(23):13440–13448. doi:10.1021/es403527n

Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K, Samiei M. Silver nanoparticles: synthesis methods, bioapplications and properties. Crit Rev Microbiol. 2016;42(2):173–180. doi:10.3109/1040841X.2014.912200




DOI: https://doi.org/10.15826/chimtech.2022.9.4.02

Copyright (c) 2022 Anton N. Kodintcev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International