Graphical Abstract

Synthesis of meso-2,2’-bipyridyl-substituted calix[4]arenes and their response to metal cations

T. D. Moseev, A. F. Khasanov, M. V. Varaksin, D. S. Kopchuk, I. S. Kovalev, O. S. Taniya, M. Rahman, S. Santra, G. V. Zyryanov, O. N. Chupakhin, V. N. Charushin

Abstract


A convenient synthetic approach to meso-substituted with 2,2’-bipyridine and 1-(pyridin-2-yl)isoquinoline residues calix[4]arenes is reported. This approach involves the reaction of generated in situ 2-lithio-calix[4]arene with 1,2,4-triazine precursor with the following aromatization of the obtained adduct, and the aza-Diels-Alder reaction of the 1,2,4-triazinyl-substituted calix[4]arene with 2,5-norbornadien or in-situ generated 1,2-dehydrobenzene. The UV/fluorescence response of thus obtained meso-pyridyl-substituted calix[4]arenes to metal cations is studied.


Keywords


calix[4]arene; 1,2,4-triazines; aza-Diels-Alder reaction; 2,2’-bipyridines; visual cations detection

Full Text:

PDF

References


Ludwig R. Calixarenes in analytical and separation chemistry. Fresenius J Anal Chem. 2000;367:103–28. doi:10.1007/s002160051611

Diamond D, Nolan K. Calixarenes: Designer Ligands for Chemical Sensors. Anal Chem. 2001;73:22A–29A. doi:10.1021/ac012376g

Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev. 2019;119:9657–721. doi:10.1021/acs.chemrev.8b00605

Veber F, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23. doi:10.1021/jm020017n

Dumazet-Bonnamour I, Halouani H, Oueslati F, Lamartine R. Calixarenes for metal cations extraction. C R Chim. 2005;8:881–91. doi:10.1016/j.crci.2005.02.004

Abraham W. Inclusion of organic cations by calix[n]arenes. J Incl Phenom Macro. 2002;43:159–74. doi:10.1023/A:1021288303104

Staffilani M, Hancock KSB, Steed JW, Holman KT, Atwood JL, Juneja RK, Burkhalter RS. Anion Binding within the Cavity of π-Metalated Calixarenes. J Am Chem Soc. 1997;119:6324–35. doi:10.1021/ja9702172

Atwood JL, Barbour LJ, Heaven MW, Raston CL. Association and orientation of C70 on complexation with calix[5]arene. Chem Commun. 2003;3:2270–1. doi:10.1039/B306411P

Varaksin MV, Utepova IA, Chupakhin ON, Charushin VN. Synthesis of New meso-Substituted Heterocyclic Calix[4]arenes via S-N(H) Approach. Macroheterocycles. 2013;6:308–14. doi:10.6060/mhc131268c

Dalbavie JO, Regnouf-de-Vains JB, Lamartine R, Perrin M, Lecocq S, Fenet B. A Calix[4]arene-Based Bipyridine Podand as Versatile Ligand for Transition Metal Cations. Eur J Inorg Chem. 2002;4:901–9. doi:10.1002/1099-0682(200203)2002:4<901::AID-EJIC901>3.0.CO;2-9

Beer PD, Szemes F, Passaniti P, Maestri M. Luminescent Ruthenium(II) Bipyridine−Calix[4]arene Complexes as Receptors for Lanthanide Cations. Inorg Chem. 2004;43:3965–75. doi:10.1021/ic0499401

Dorta R, Shimon LJW, Rozenberg H, Ben-David Y, Milstein D. A New Ligand System Based on a Bipyridine-Functionalized Calix[4]arene Backbone Leading to Mono- and Bimetallic Complexes. Inorg Chem. 2003;42:3160–7. doi:10.1021/ic020643a

Beer PD, Martin JP, Drew MGB. Calix[4]arene cryptand and new 1,3-bis-pyridyl,-bipyridyl and -alkylthioether calix[4]arenes designed to coordinate transition metal cations. Tetrahedron. 1992;48:9917–28. doi:10.1016/S0040-4020(01)92282-3

Regnouf-de-Vains JR, Lamartine R. Synthesis and Complexation Properties of a New Class of Receptors based on a cone‐configurated tetra‐p‐(tert‐butyl)calix[4]arene and bipyridyl subunits. Helv Chim Acta. 1994;77:1817–25. doi:10.1002/hlca.19940770713

Grigg R, Holmes JM, Jones SK, Norbert WDAJ. Luminescent pH sensors based on p-tert-butylcalix[4]arene-linked ruthenium(II) trisbipyridyl complexes. J Chem Soc, Chem Commun. 1994;2:185–7. doi:10.1039/C39940000185

Ulrich G, Ziessel R. Calixarene[4]-podands and barrel-shaped calixarene[4]-cryptands based on 5,5′-substituted-2,2′-bipyridine subunits. Tetrahedron Lett. 1994;35:6299–302. doi:10.1016/S0040-4039(00)73416-2

Regnouf-De-Vains JB, Lamartine R, Fenet B. Electrospray mass spectrometric evidence of calixarene p-quinone methide formation. Helv Chim Acta. 1998;81:661–9. doi:10.1002/(SICI)1096-9888(1998100)33:10<968::AID-JMS706>3.0.CO;2-M

Dalbavie JO, Regnouf-de-Vains JB, Lamartine R, Lecocq S, Perrin M. Complexation of cobalt(II) at the upper rim of two new calix[4]arene/bipyridine-based podands. Eur J Inorg Chem. 2000;4:683–91. doi:10.1002/(SICI)1099-0682(200004)2000:4<683::AID-EJIC683>3.0.CO;2-N

Beresnev DG, Itsikson NA, Chupakhin ON, Charushin VN, Kodess MI, Butakov AI, Rusinov GL, Morzherin YY, Konovalov AI, Antipin IS. One-step heterylation at the upper rim of calix[4]arene with 1,2,4-triazin-5(2H)-ones. J Org Chem. 2006;71:8272–5. doi:10.1021/jo061069d

(a) Pabst GR, Sauer J. A new and simple 'LEGO' system for the synthesis of 2,6-oligopyridines. Tetrahedron Lett. 1998;39:6687–90. doi:10.1016/S0040-4039(98)01437-3; (b) Pabst GR, Schmid K, Sauer J. A new and simple 'LEGO' system for the synthesis of branched oligopyridines. Tetrahedron Lett. 1998;39:6691–4. doi:10.1016/S0040-4039(98)01438-5; (c) Pabst GR, Sauer J. The new and simple 'LEGO' system: Its application to the synthesis of superbranched oligopyridines. Tetrahedron Lett. 1998;39:8817–20. doi:10.1016/S0040-4039(98)02042-5; (d) Pfüller OC, Sauer J. The new and simple ‘LEGO’ system for the synthesis of thienyl substituted 2,6-oligopyridines. Tetrahedron Lett. 1998;39:8821–4. doi:10.1016/S0040-4039(98)02043-7; (e) Pabst GR, Pfüller OC, Sauer J. The new and simple 'LEGO' system: Its application for the synthesis of 6-oligopyridyl-1,5,12-triazatriphenylenes. Tetrahedron Lett. 1998;39:8825–8. doi:10.1016/S0040-4039(98)02044-9; (f) Pabst GR, Pfüller OC, Sauer J. The new and simple 'LEGO' System: Synthesis and reactions of ruthenium(II) complexes. Tetrahedron. 1999;55:8045–64. doi:10.1016/S0040-4020(99)00422-6; (g) Stanforth SP, Tarbit B, Watson MD. Synthesis of pyridine and 2,2′-bipyridine derivatives from the aza Diels–Alder reaction of substituted 1,2,4-triazines. Tetrahedron. 2004;60:8893–7. doi:10.1016/j.tet.2004.07.024

(a) Rykowski A, Branowska D, Kielak J. A novel one-pot synthesis of annulated 2,2'-bipyridine ligands by inverse electron demand Diels-Alder reaction of 5,5'-bi-1,2,4-triazines. Tetrahedron Lett. 2000;41:3657–9. doi:10.1016/S0040-4039(00)00436-6; (b) Branowska D, Rykowski A. Application of 1-vinylimidazole in Diels-Alder reaction of 5,5′-bi-1,2,4-triazines. Synlett. 2002:1892–4. doi:10.1055/s-2002-34880; (c) Branowska D, Kielak J. A facile synthesis of annulated 2,2′-bipyridine ligands with alkylsulfanyl and alkylsulfonyl substituents in the 6 and 6' positions. Pol J Chem. 2003;77:1149–55. (d) Kozhevnikov DN, Kozhevnikov VN, Nikitina TV, Rusinov VL, Chupakhin ON, Neunhoeffer H. Synthesis of functionalised bipyridines by sequential nucleophilic substitution of hydrogen and cycloaddition in 1,2,4-triazine rings. Mendeleev Commun. 2002;12:30–2. doi:10.1070/MC2002v012n01ABEH001548

Raw SA., Taylor RJK. Highly substituted pyridines via tethered imine–enamine (TIE) methodology. Chem Commun. 2004;5:508–9. doi:10.1039/B316107B

(a) Kopchuk DS, Kovalev IS, Khasanov AF, Zyryanov GV, Slepukhin PA, Rusinov VL, Chupakhin ON. A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines. Mendeleev Commun. 2013;23:142–4. doi:10.1016/j.mencom.2013.05.007; (b) Kopchuk DS, Nikonov IL, Zyryanov GV, Kovalev IS, Rusinov VL, Chupakhin ON. Preparation of 3-cyano-1-(2-pyridyl)isoquinolines by using aryne intermediates. Chem Heterocycl Compd. 2014;50:907–10. doi:10.1007/s10593-014-1545-9; (c) Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, Nosova EV, Gundala S, Venkatapuram P, Zyryanov GV, Majee A, Chupakhin ON. Studies on the interactions of 5-R-3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels-Alder reaction versus aryne-mediated domino process. Org Biomol Chem. 2018;16:5119–31. doi:10.1039/C8OB00847G




DOI: https://doi.org/10.15826/chimtech.2020.7.4.14

Copyright (c) 2020 Moseev T.D., Khasanov A.F., Varaksin M.V., Kopchuk D.S., Kovalev I.S., Taniya O.S., Rahman M., Santra S., Zyryanov G.V., Chupakhin O.N., Charushin V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International