Cover Image

Sheelite-related strontium molybdates: synthesis and characterization

Zoya Alekseevna Mikhaylovskaya, Elena Stanislavovna Buyanova, Sofia Aleksandrovna Petrova, Alena Andreevna Nikitina

Abstract


The present research is devoted to the cationic-deficient SrMoO4-based sheelite-related complex oxides. The doping with bismuth to A sublattice and codoping with bismuth and vanadium (to A and B sublattices, respectively) were discussed. The X-Ray powder diffraction and infrared spectroscopy were used to investigate structural characteristics of the complex oxides. In
Sr1-1.5xBixMoO4, a superstructural ordering was observed. Conductivity and dielectric loss of ceramic samples are measured using alternating current.

Keywords


sheelite; strontium molybdates; dielectric materials

Full Text:

PDF

References


Mikhailik VB, Kraus H, Miller G, Mykhaylyk MS, Wahl D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. J. Appl. Phys. 2005:97(8):083523. doi:10.1063/1.1872198

Faure N, Borel C, Couchaud M, Basset G, Templier R, and Wyon C. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Appl. Phys. B: Lasers Opt. 1996:63(6):593–98. doi:10.1007/BF01830998

Sharma N, Shaju KM, Rao GVS, Chowdari BVR, Dong ZL, White TJ. Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries. Chem. Mater. 2004:16 (3):504–12. doi:10.1021/cm0348287

Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Liu MS. Electronic structure, growth mechanism and photoluminescence of CaWO4 crystal. Cryst. Eng. Comm. 2012:14(3):853–68. doi:10.1039/C1CE05977G

Yao WF, Ye JHJ. Photophysical and photocatalytic properties of Ca1-xBixVxMo1-xO4 solid solutions. Phys. Chem. B. 2006:110(23):11188–95 doi:10.1021/jp0608729

Choi GK., Kim JR., Yoon SH., Hong KS. Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Ceram. Soc. 2007:27(8-9):3063–67. doi:10.1016/j.jeurceramsoc.2006.11.037

Esaka T, Mina-ai T, Iwahara H. Oxide ion conduction in the solid solution based on the scheelite-type oxide PbWO4 // Solid State Ionics: 1992:57(3-4): 319–25. doi:10.1016/0167-2738(92)90165-L

Zhang GG., Fang QF., Wang XP., Yi ZG. Dielectric relaxation study of Pb1-xLaxMoO4+δ (x = 0–0.3) oxide-ion conductors. J. Phys.: Condens. Matter .2003:15(24): 4135–42. doi:10.1088/0953-8984/15/24/307

Cheng J, Liu C, Cao W, Qi M, Shao G. Synthesis and electrical properties of scheelite Ca1-xSmxMoO4+d solid electrolyte ceramics . Mat. Res. Bull. 2011:46(2):185–89. doi:10.1016/j.materresbull.2010.11.019

Md. Haque M., Kim D-K. Luminescent properties of Eu activated MLa2(MoO4)4 based (M=Ba, Sr and Ca) novel red-emitting phosphors. Mater. Lett. 2009:3(9-10):793-96. doi:10.1016/j.matlet.2009.01.018

Jiang P., Gao W., Cong R., Yang T. Structural investigation of the A-site vacancy in scheelites and the luminescence behavior of two continuous solid solutions A1-1.5xEux•0.5xWO4 and A0.64–0.5yEu0.24Liy•0.12–0.5yWO4 (A = Ca, Sr; • = vacancy). Dalton Trans. 2015:44(13):6175-83. doi:10.1039/c5dt00022j

Tomaszewicz E, Kaczmarek SM, Fuks H. New cadmium and rare-earth metal molybdates with scheelite type structure // Mater. Chem. Phys. 2010:122(2-3):595-601. doi:10.1016/j.matchemphys.2010.03.052

Su Y, Li L, Li G. Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+ . Chem. Mater. 2008:20(19):6060–67. doi:10.1021/cm8014435

Sameera S, Prabhakar Rao P, Divya S, Raj KV, Aju Thara TR. High IR reflecting BiVO4-CaMoO4 based yellow pigments for cool roof applications. Energ. Buildings. 2017:154: 491-98. doi:10.1016/j.enbuild.2017.08.089

Sleight AW, Aykan K, Rogers DB. New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure. J. Solid State Chem. 1975:13(3): 231-36. doi:10.1016/0022-4596(75)90124-3

Guo J, Randall CA, Zhang G, Zhou D, Chen Y, Wang H. Synthesis, structure, and characterization of new low-firing microwave dielectric ceramics: Ca1−3xBi2xФxMoO4. J. Mater. Chem. C. 2014:2(35):7364-72. doi:10.1039/c4tc00698d

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Basiev TT, Sobol AA, Voronko YK, Zverev PG. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for raman lasers. Opt. Mater.2000:15(3):205-16. doi:10.1016/S0925-3467(00)00037-9

Cho Y, Bull Y. Fine-tuning the emission color of a transparent suspension of SrMoO4: Eu3+,Tb3+ nanophosphors. Korean Chem. Soc. 2015:36(1):282–86. doi:10.1002/bkcs.10065




DOI: https://doi.org/10.15826/chimtech.2018.5.4.03

Copyright (c) 2018 Zoya Alekseevna Mikhaylovskaya, Elena Stanislavovna Buyanova, Sofia Aleksandrovna Petrova, Alena Andreevna Nikitina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International