Cover Image

Synthesis of 3-ethoxycarbonyl-4-hydroxy-1,4-dihydroazolo[5,1-c][1,2,4]triazines and study of antiglycation activity

V. D. Parkhamovich, V. V. Fedotov, R. A. Drokin, V. L. Rusinov, U. M. Ibragimova, N. V. Valuisky, A. I. Shushakova, R. A. Litvinov, A. A. Spasov

Abstract


A novel method for the synthesis of a series of 3-ethoxycarbonyl-4-hydroxy-1,4-dihydroazolo[5,1-c][1,2,4]triazine derivatives was developed using ethyl-3-morpholinoacrylate as a key azo component. The synthesized compounds were evaluated for their antiglycation activity. It was found that the obtained compounds demonstrated significantly higher efficacy compared to aminoguanidine as a well-known reference drug. Among the derivatives, compound 9g exhibited the most potent activity, surpassing aminoguanidine by 2.1 times with IC50 values of 999.0 µM and 2134.5 µM, respectively. The use of the MTT assay allowed investigating the cytotoxicity of the lead compound, which showed the absence of cytotoxic properties and the presence of a cytovitalizing effect at a concentration of 10 μM, indicating its potential as a promising candidate for the development of new antidiabetic agents. These findings highlight the potential of azolotriazine derivatives as a foundation for further pharmacological exploration and drug design in the treatment of diabetes and its complications.

Keywords


azolotriazines; antidiabetic activity; antiglycation activity; synthesis; azo-coupling; cytotoxicity

Full Text:

PDF

References


International Diabetes Federation. IDF Diabetes Atlas, 10th Edition. 2021. 29 p. Available from: https://diabetesatlas.org/data/en/world/.

Gavrilova AO, Severina AS, Shamkhalova MSh, Shestakova MV. The role of glycation end products in the pathogenesis of diabetic nephropathy. Diabetes Mellitus. 2021;24(5):461–469. doi:10.14341/DM12784

Singh VP, Bali A, Singh N, Jaggi AS. Advanced Glycation End Products and Diabetic Complications. Korean J Physiol Pharmacol. 2014;18(1):1–14. doi:10.4196/kjpp.2014.18.1.1

Huby R, Harding JJ. Non-enzymic glycosylation (glycation) of lens proteins by galactose and protection by aspirin and reduced glutathione. Exp Eye Res. 1988;47(1):53–59. doi:10.1016/0014-4835(88)90023-1

Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Sci. 1986;232(4758):1629–1632. doi:10.1126/science.3487117

Cooper ME, Thallas V, Forbes J, Scalbert E, Sastra S, Darby I, Soulis T. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia. 2000;43(5):660–664. doi:10.1007/s001250051355

Kim HY, Lee JM, Yokozawa T, Sakata KS, Lee S. Protective activity of flavonoid and flavonoid glycosides against glucose-mediated protein damage. Food Chem. 2011;126(3):892–895. doi:10.1016/j.foodchem.2010.11.068

Savateev KV, Spasov AA, Rusinov VL. Small synthetic molecules with antiglycation activity. Structure-activity relationship. Russ Chem Rev. 2022;91(6):RCR5041. doi:10.1070/RCR5041

Rusinov VL, Sapozhnikova IM, Spasov AA, Chupakhin ON. Fused Azoloazines with Antidiabetic Activity. Russ Chem Bull. 2022;71:2561–2594. doi:10.1007/s11172-022-3687-8

Rusinov VL, Sapozhnikova IM, Bliznik AM, Chupakhin ON, Charushin VN, Spasov AA, Vassiliev PM, Kuznetsova VA, Rashchenko AI, Babkov DA. Synthesis and evaluation of novel [1,2,4]triazolo[5,1-c][1,2,4]triazines and pyrazolo[5,1-c][1,2,4]triazines as potential antidiabetic agents. Arch Pharm. 2017;350(5):1–15. doi:10.1002/ardp.201600361

Karpenko S, Deev S, Kiselev O, Charushin V, Rusinov V, Ulomsky E, Deeva E, Yanvarev D, Ivanov A, Smirnova O, Kochetkov S, Chupakhin O, Kukhanova M. Antiviral activity of novel azoloazines. Antimicrob Agents Chemother. 2010;54(5):2017–2022. doi:10.1128/AAC.01572-09

Thorne PV, Edmund D. Patent WO 2017/144708. 2017.

Chupakhin ON, Rusinov VL, Ulomsky EN, Savateev KL, Borisov SS, Novikova NN, Loginova SY, Borisevich SV, Sorokin PV. Patent RF 2536874. 2014.

Chupakhin ON, Rusinov VL, Ulomsky EN, Savateev KV, Borisov SS, Novikova NA, Loginova SY, Borisevich SV, Sorokin PV. Patent US 9790227. 2017.

Drokin RA, Fesenko EA, Mozharovskaia PN. 4-Hydroxy-3-nitro-1,4-dihydrotriazolo[5,1-c][1,2,4]triazines: synthesis, antiviral properties and electrochemical characteristics. Izv Akad Nauk Ser Khim. 2022;(11):2460–2466.

Voinkov EK, Drokin RA, Fedotov VV. Azolo[5,1-c][1,2,4]triazines and azoloazapurines: synthesis, antimicrobial activity and in silico studies. ChemistrySelect. 2022;7(5):e202104253. doi:10.1002/slct.202104253

Hassan SM, Abdel Aal MM, El-Maghraby AA, Bashandy MS. Heteroaromatisation with sulfonamido phenyl ethanone, part II: synthesis of novel thiazolyl acetonitriles and thiazolyl acrylonitriles and their derivatives containing dimethylsulfonamide moiety. Phosphorus Sulfur Silicon Relat Elem. 2009;184(2):427–452. doi:10.1080/10426500802176523

Yakovlev DS, Vassiliev PM, Agatsarskaya YV. Searching for novel antagonists of adenosine A1 receptors among azolo[1,5-a]pyrimidine nitro derivatives. Res Results Pharmacol. 2022;8(2):69–75. doi:10.3897/rrpharmacology.8.77854

Savateev KV, Ulomsky EN, Butorin II, Charushin VI, Charushin VN., Rusinov VL, Chupakhin ON. Azoloazines as A2a receptor antagonists. Structure-activity relationship. Russ Chem Rev. 2018;87(7):636–669. doi:10.1070/RCR4792

Hamama WS, Berghot MA, Baz EA, Gouda MA. Synthesis and antioxidant evaluation of some new 3-substituted coumarins. Arch Pharm. 2011;344(11):710–718. doi:10.1002/ardp.201000263

El-Mekabaty A, Fadda AA. Novel pyrazolo[1,5-a]pyrimidines and pyrazolo[5,1-c][1,2,4]triazines incorporating indole moiety as a new class of antioxidant agents. J Heterocycl Chem. 2018;55(10):2303–2308. doi:10.1002/jhet.3288

Litvinov RA, Drokin RA, Shamshina DD, et al. Method for prediction of antiglycation activity by determining the energies of boundary molecular orbitals on the example of new 4-hydroxy-1,4-dihydroazolo[5,1-c]-1,2,4-triazines. Rus J of Bioorg Chem. 2020;46(6): 1278–1284. doi:10.1134/S1068162020060175

Choudhary G, Peddinti RK. Introduction of a clean and promising protocol for the synthesis of β-amino-acrylates and 1,4-benzoheterocycles: an emerging innovation. Green Chem. 2011;13(11):3290–3299. doi:10.1039/c1gc15701a

Kimura S, Saito NA. Stereocontrolled total synthesis of (±)-Saframycin A. Tetrahedron. 2018;74(34):4504–4514. doi:10.1016/j.tet.2018.07.017

Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of Fluorine in Medicinal Chemistry. J Med Chem. 2015;58:8315–8359. doi:10.1021/acs.jmedchem.5b00258

Ozerov A, Merezhkina D, Zubkov FI, Litvinov R, Ibragimova U, Valuisky N, Borisov A, Spasov A. Synthesis and antiglycation activity of 3-phenacyl substituted thiazolium salts, new analogs of Alagebrium. Chem Biol Drug Des. 2024;103(1):e14391. doi:10.1111/cbdd.14391

Nikitin E, Mironova E, Shpakovsky D, Gracheva Yu, Koshelev D, Utochnikova V, Lyssenko K, Oprunenko Yu, Yakovlev DS, Litvinov RA, Seryogina M, Spasov AA, Milaeva ER. Cytotoxic and Luminescent properties of novel organotin complexes with chelating antioxidant ligand. Molecules. 2022;27(23):8359.

Otto K, Thaden A. The Laboratory Mouse. Chapter 5.4. Anaesthesia. Analgesia and Euthanasia. 2012.




DOI: https://doi.org/10.15826/chimtech.2025.12.2.15

Copyright (c) 2025 V. D. Parkhamovich, V. V. Fedotov, R. A. Drokin, V. L. Rusinov, U. M. Ibragimova, N. V. Valuisky, A. I. Shushakova, R. A. Litvinov, A. A. Spasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice