Cover Image

Optical properties of zinc oxide coating with an anisotropic network of nickel fibers

Guliya Nizameeva, Viktoria Kuznetsova, Elgina Lebedeva, Irek Nizameev

Abstract


Transparent electrodes are a special class of materials that have high electrical conductivity and transparency in the visible wavelength range. These are key elements of various devices, such as solar batteries, touch screens, etc. Previously, transparent electrodes were made of a fragile and non-ecological material – indium tin oxide (ITO). ITO has a low surface resistance of 10–25 Ohm/sq and a transmittance of more than 90%. However, the complexity of the production technology and high cost pushes researchers to find a replacement for indium tin oxide. In this paper, ZnO/NiFs films obtained by introducing an oriented network of nickel fibers (NiFs) into a thin layer of zinc oxide ZnO while maintaining its transparency in the optical range are considered an alternative to ITO. In the course of the work, a comparative analysis of the optical properties of zinc oxide films and ZnO/NiFs films with different numbers of ZnO layers was carried out. The results obtained by optical spectroscopy show that the transparency coefficient T550 of ZnO films, depending on the number of layers, lies in the range of 90–92%. Compared with a pure ZnO film, the value of the transparency coefficient T550 of the developed ZnO/NiFs system is 85%. Also, for ZnO and ZnO/NiFs films, the absorption spectra in the region of the intrinsic absorption edge were analyzed, and the band gap Eg was estimated. It was shown that the value of the band gap for zinc oxide films lies in the range of 3.23–3.26 eV. For ZnO/NiFs films, an insignificant decrease in the integral value of the band gap is observed, which lies in the range of 3.18–3.25 eV.

Keywords


Transparent electrodes; zinc oxide; nickel fibers network; transparency; band gap

Full Text:

PDF

References


Wang T, Lu K, Xu Z, Lin Z, Ning H, Qiu T, Yang Z, Zheng H, Yao R, Peng J. Recent developments in flexible transparent electrode. Crystals. 2021;11(5):511. doi:10.3390/cryst11050511

Shi J, Zhang J, Yang L, Qu M, Qi DC, Zhang KHL. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv Mater. 2021;33(50):2006230. doi:10.1002/adma.202006230

Badeker K. Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds. Ann Phys. 1907;22:749.

Rupprecht G. Electric and photoelectric conductivity of thin layers of indium oxide. Z Physik. 1954;139:504–17.

Li D, Lai WY, Zhang YZ, Huang W. Printable transparent conductive films for flexible electronics. Adv Mater. 2018;30(10):1704738. doi:10.1002/adma.201704738

Kim DS, Jung JY, Seo S, Kim JH. Facile fabrication of multifunctional transparent electrodes via spray deposition of indium-tin-oxide nanoparticles. Appl Surf Sci. 2023;611:155756. doi:10.1016/j.apsusc.2022.155756

Azani MR, Hassanpour A, Torres T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)‐free flexible solar cells. Adv Energy Mater. 2020;10(48):2002536. doi:10.1002/aenm.202002536

Sharma S, Shriwastava S, Kumar S, Bhatt K, Tripathi CC. Alternative transparent conducting electrode materials for flexible optoelectronic devices. Opto-Electron Rev. 2018;26(3):223–35. doi:10.1016/j.opelre.2018.06.004

Zhang Y, Ng SW, Lu X, Zheng Z. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem Rev. 2020;120(4):2049–122. doi:10.1021/acs.chemrev.9b00483

Jeon I, Yoon J, Kim U, Lee C, Xiang R, Shawky A, Xi J, Byeon J, Lee HM, Choi M, Maruyama S, Matsuo Y. High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells. Adv Energy Mater. 2019;9(27):1901204. doi:10.1002/aenm.201901204

Mustafin IA, Akhmetov AF, Salikhov RB, Mullagaliev IA, Salikhov TR, Galiakhmetov RN, Shabunina OV, Kopchuk DS, Kovalev IS, Mustafin AG. Nanofibrous carbon (multi-wall carbon nanotubes): synthesis and electrochemical studies by using field-effect transistor setup. Chimica Techno Acta. 2024;11(4):202411421. doi:10.15826/chimtech.2024.11.4.21

Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in flexible metallic transparent electrodes. Small. 2022;18(19):2106006. doi:10.1002/smll.202106006

Ma Y, Zhi L. Graphene‐based transparent conductive films: material systems, preparation and applications. Small Methods. 2019;3(1):1800199. doi:10.1002/smtd.201800199

Truong KT, Pham TH, Tran KV. The impact of dimethylformamide on the synthesis of graphene quantum dots derived from graphene oxide. Chimica Techno Acta. 2023;10(4). doi:10.15826/chimtech.2023.10.4.05

Putri YE, Wendari TP, Arham RA, Muharmi M, Satria D, Rahmayeni R, Wellia DV. Optical response of SrTiO3 thin films grown via a sol-gel-hydrothermal method. Chimica Techno Acta. 2023;10(1):202310108. doi:10.15826/chimtech.2023.10.1.08

Liu Y, Xie J, Liu L, Fan K, Zhang Z, Chen S, Chen S. Inkjet-printed highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) electrode for organic light-emitting diodes. Micromachines. 2021;12(8):889. doi:10.3390/mi12080889

Jang W, Kim BG, Seo S, Shawky A, Kim MS, Kim K, Mikladal B, Kauppinen EI, Maruyama S, Jeon I, Wang DH. Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today. 2021;37:101081. doi:10.1016/j.nantod.2021.101081

Feng X, Wang L, Huang YYS, Luo Y, Ba J, Shi HH, Pei Y, Zhang S, Zhang Z, Jia X, Lu B. Cost-effective fabrication of uniformly aligned silver nanowire microgrid-based transparent electrodes with higher than 99% transmittance. ACS Appl Mater Interfaces. 2022;14(34):39199-39210. doi:10.1021/acsami.2c09672

Lancellotti L, Bobeico E, Della Noce M, Mercaldo LV, Usatii I, Veneri PD, Bianco GV, Sacchetti A, Bruno G. Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells. Appl Surf Sci. 2020;525:146443. doi:10.1016/j.apsusc.2020.146443

Jantzen T, Hack K, Yazhenskikh E, Müller M. Thermodynamic assessment of oxide system In2O3-SnO2-ZnO. Chimica Techno Acta. 2018;5(4):166–88. doi:10.15826/chimtech.2018.5.4.02

Hofmann AI, Cloutet E, Hadziioannou G. Materials for transparent electrodes: from metal oxides to organic alternatives. Adv Electron Mater. 2018;4(10):1700412. doi:10.1002/aelm.201700412

Sharma DK, Shukla S, Sharma KK, Kumar V. A review on ZnO: Fundamental properties and applications. Mater Today: Proc. 2022;49:3028–35. doi:10.1016/j.matpr.2020.10.238

Egorova AV, Belova KG, Animitsa IE, Morkhova YA, Kabanov AA. Effect of zinc doping on electrical properties of LaAlO3 perovskite. Chimica Techno Acta. 2021;8(1):20218103. doi:10.15826/chimtech.2020.8.1.03

Grivel JC. Subsolidus phase equilibria of the CuO–SrO–ZnO pseudoternary system in air at 900 °C. Chimica Techno Acta. 2018;5(1):6–15. doi:10.15826/chimtech.2018.5.1.01

Maraeva E, Radaykin D, Bobkov A, Permiakov N, Matveev V, Maximov A, Moshnikov V. Sorption analysis of composites based on zinc oxide for catalysis and medical materials science. Chimica Techno Acta. 2022;9(4). doi:10.15826/chimtech.2022.9.4.22

Ponja SD, Sathasivam S, Parkin IP, Carmalt CJ. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci Rep. 2020;10(1):638. doi:10.1038/s41598-020-57532-7

Özgür Ü, Avrutin V, Morkoç H. Zinc oxide materials and devices grown by molecular beam Epitaxy. In Molecular Beam Epitaxy. 2018:343–75. doi:10.1016/B978-0-12-812136-8.00016-5

Berumen-Torres JA, Quiñones-Galvan JG, Durán-Muñoz H, Guzmán CH, Torres-Delgado G, Ortega-Sigala JJ, Araiza-Ibarra JJ, Castanedo-Pérez R. Low resistivity annealed tin-doped zinc oxide thin films prepared by the sol gel technique. Mater Sci Eng: B. 2021;268:115134. doi:10.1016/j.mseb.2021.115134

Ejsmont A, Goscianska J. Hydrothermal synthesis of ZnO superstructures with controlled morphology via temperature and pH optimization. Mater. 2023;16(4):1641. doi:10.3390/ma16041641

Abdel-Galil A, Hussien MS, Yahia IS. Synthesis and optical analysis of nanostructured F-doped ZnO thin films by spray pyrolysis: Transparent electrode for photocatalytic applications. Opt Mater. 2021;114:110894. doi:10.1016/j.optmat.2021.110894

Choi D. The transmittance modulation of ZnO/Ag/ZnO flexible transparent electrodes fabricated by magnetron sputtering. J Nanosci Nanotechnol. 2020;20(1):379–83. doi:10.1166/jnn.2020.17238

Parihar V, Raja M, Paulose R. A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev Adv Mater Sci. 2018;53(2):119–30. doi:10.1515/rams-2018-0009

Matei E, Busuioc C, Evanghelidis A, Zgura I, Enculescu M, Beregoi M, Enculescu I. Hierarchical functionalization of electrospun fibers by electrodeposition of zinc oxide nanostructures. Appl Surf Sci. 2018;458:555–63. doi:10.1016/j.apsusc.2018.06.143

Maraeva EV, Permiakov NV, Kedruk YY, Gritsenko LV, Abdullin KA. Creating a virtual device for processing the results of sorption measurements in the study of zinc oxide nanorods. Chimica Techno Acta. 2020;7(4):154–58. doi:10.15826/chimtech.2020.7.4.03

Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit Rev Solid State Mater Sci. 2022;47(2):99–141. doi:10.1080/10408436.2021.1886041

Adedokun O. Review on Transparent Conductive Oxides Thin Films deposited by Sol-gel spin coating technique. Int J Eng Sci Appl. 2018;2(3):88–97.

Chen Z, Wang J, Wu H, Yang J, Wang Y, Zhang J, Bao Q, Wang M, Ma Z, Tress W, Tang Z. A transparent electrode based on solution-processed ZnO for organic optoelectronic devices. Nat Commun. 2022;13(1):4387. doi:10.1038/s41467-022-32010-y

Zhang D, Yu W, Zhang L, Hao X. Progress in the synthesis and application of transparent conducting film of AZO (ZnO: Al). Mater. 2023;16(16):5537. doi:10.3390/ma16165537

Mia MNH, Habiba U, Pervez MF, Kabir H, Nur S, Hossen MF, Sen SK, Hossain MK, Iftekhar MA, Rahman MM. Investigation of aluminum doping on structural and optical characteristics of sol–gel assisted spin-coated nano-structured zinc oxide thin films. Appl Phys A. 2020;126:1–12. doi:10.1007/s00339-020-3332-z

Balaprakash V, Gowrisankar P, Sudha S, Rajkumar R. Aluminum doped ZnO transparent conducting thin films prepared by sol-gel dip coating technique for solar cells and optoelectronic applications. Mater Technol. 2018;33(6):414–20. doi:10.1080/10667857.2018.1455384

Murugesan M, Arjunraj D, Mayandi J, Venkatachalapathy V, Pearce JM. Properties of Al-doped zinc oxide and In-doped zinc oxide bilayer transparent conducting oxides for solar cell applications. Mater Lett. 2018;222:50–3. doi:10.1016/j.matlet.2018.03.097

Istrate AI, Nastase F, Mihalache I, Comanescu F, Gavrila R, Tutunaru O, Romanitan C, Tucureanu V, Nedelcu M, Müller R. Synthesis and characterization of Ca doped ZnO thin films by sol–gel method. J Sol-Gel Sci Technol. 2019;92:585–97. doi:10.1007/s10971-019-05144-7

Che L, Song J, Yang J, Chen X, Li J, Zhang N, Yang S, Wang Y. Fluorine, chlorine, and gallium co-doped zinc oxide transparent conductive films fabricated using the sol-gel spin method. J Materiomics. 2023;9(4):745–53. doi:10.1016/j.jmat.2023.02.002

Ko D, Gu B, Cheon J, Roh JS, Kim CS, Jo S, Hyun DC, Kim J. Decoupling the contributions to the enhancement of electrical conductivity in transparent silver nanowire/zinc oxide composite electrodes. Mater Chem Phys. 2019;223:634–40. doi:10.1016/j.matchemphys.2018.11.053

Aghazadehchors S, Nguyen VH, Munoz-Rojas D, Jiménez C, Rapenne L, Nguyen ND, Bellet D. Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss. Nanoscale. 2019;11(42):19969–79. doi:10.1039/C9NR05658K

Tigan D, Genlik SP, Imer B, Unalan HE. Core/shell copper nanowire networks for transparent thin film heaters. Nanotechnol. 2019;30(32):325202. doi:10.1088/1361-6528/ab19c6

Nizameev IR, Muscat AJ, Motyakin MV, Grishin MV, Zakharova LYa, Nizameeva GR, Kadirov MK. Surfactant templated oriented 1-D nanoscale platinum and palladium systems on a modified silicon surface. Nano-Structures Nano-Objects. 2019;17:1–6. doi:10.1016/j.nanoso.2018.10.004

Nizameev I, Nizameeva G, Kadirov M. Transparent Conductive Layer Based on Oriented Platinum Networks. ChemistrySelect. 2019;4:13564–68. doi:10.1002/slct.201904293

Balasubramani V, Chandraleka S, Rao TS, Sasikumar R, Kuppusamy MR, Sridhar TM. Recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides. J Electrochem Soc. 2020;167,:037572. doi:10.1149/1945-7111/ab77a0

Balasubramani V, Sureshkumar S, Rao TS, Sridhar TM. Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations. ACS omega. 2019;4:9976–9982. doi:10.1021/acsomega.9b00754

Nizameev IR, Nizameeva GR, Faizullin RR, Kadirov MK. Oriented nickel nanonetworks and its submicron fibres as a basis for a transparent electrically conductive coating. ChemPhysChem. 2021;22:288–92. doi:10.1002/cphc.202000876

Nizameev IR, Nizameeva GR, Kadirov MK. Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly (3, 4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid. Nanomaterials. 2023;13(5):831. doi:10.3390/nano13050831

Nizameeva GR, Gainullin RR, Lebedeva EM, Nizameev IR. Gas Sensing Element of a Conductometric Nitrogen Dioxide Sensor Based on Oriented Nickel Oxide Networks. High Energ Chem. 2023;57(Suppl 1):S45–S49. doi:10.1134/S0018143923070299

Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum. 2000;16(12):1214–22. doi:10.1088/0022-3735/16/12/023

Sanchez-Gonzalez J, Dıaz-Parralejo A, Ortiz AL, Guiberteau F. Determination of optical properties in nanostructured thin films using the Swanepoel method. Appl Surf Sci. 2006;252(17):6013–17. doi:10.1016/j.apsusc.2005.11.009

Kumar S, Kumar A, Kumar A, Krishnan V. Nanoscale zinc oxide-based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Rev. 2020;62(3):346–405. doi:10.1080/01614940.2019.1684649

Udayachandran Thampy US, Mahesh A, Sibi KS, Jawahar IN, Biju V. Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route. SN Appl Sci. 2019;1:1–15. doi:10.1007/s42452-019-1426-z

Hashim M, Usman M, Ahmad S, Shah R, Ali A, Rahman NU. ZnO/NiO nanocomposite with enhanced photocatalytic H2 production. Int J Photoenergy. 2024;(1): 2676368. doi:10.1155/2024/2676368

Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir. 2013;29(45):13836–13842. doi:10.1021/la4033282

Jiang S, Hou PX, Chen ML, Wang BW, Sun DM, Tang DM, Jin Q, Guo QX, Zhang DD, Du JH, Tai KP, Tan J, Kauppinen EI, Liu C, Cheng HM. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci Adv. 2018;4(5):eaap9264. doi:10.1126/sciadv.aap92

Kang J, Han K, Sun X, Zhang L, Huang R, Ismail I, Wang Z, Ding C, Zha W, Li F, Luo Q, Li Y, Lin J, Ma CQ. Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells. Org Electron. 2020;82:105714. doi:10.1016/j.orgel.2020.105714




DOI: https://doi.org/10.15826/chimtech.2025.12.2.11

Copyright (c) 2025 Guliya Nizameeva, Viktoria Kuznetsova, Elgina Lebedeva, Irek Nizameev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice