
Synthesis, luminescent properties and application opportunities of С-substituted ortho-carborane π-conjugated luminophores: a mini review
Abstract
С-substituted o-carborane luminophores bearing an alkenyl- or alkynyl- π-conjugated system. The main luminescence properties, such as absorbance, emission peaks, photophysical effects (particularly intramolecular charge transfer), local excitation, dual emission, and structure-property relationships are comprehensively studied. The advantages of the diverse applications for this type of o-carborane cluster compounds as organic light-emitting diodes (OLEDs), semiconductors, chemosensors, and other components of modern organic electronics are extensively discussed. In addition, the existing limitations in the chemical design and application possibilities are also considered.
Keywords
Full Text:
PDFReferences
Grimes RN. 2016. Carboranes. 3rd ed. San Diego, CA: Academic Press.
Crabtree R, Mingos M, Eds., Comprehensive Organometallic Chemistry III. London, England: Elsevier Science, 2006.
Poater J, Solà M, Viñas C, Teixidor F. A aromaticity and three‐dimensional aromaticity: Two sides of the same coin? Angew Chem Int Ed Engl. 2014;53(45):12191–12195. doi:10.1002/anie.201407359
Poater J, Viñas C, Bennour I, Escayola S, Solà M, Teixidor F. Too persistent to give up: Aromaticity in boron clusters survives radical structural changes. J Am Chem Soc. 2020;142(20):9396–9407. doi:10.1021/jacs.0c02228
Olah GA, Wade K, Williams RE. 1991. Electron deficient boron and carbon clusters. Nashville, TN: John Wiley & Sons.
Qiu Z. Recent advances in transition metal-mediated functionalization of o-carboranes. Tetrahedron Lett. 2015;56(8):963–971. doi:10.1016/j.tetlet.2015.01.038
Dong B, Oyelade A, Kelber JA. Carborane-based polymers: a novel class of semiconductors with tunable properties. Phys Chem Chem Phys. 2017;19(18):10986–10997. doi:10.1039/c7cp00835j
Zhang X, Rendina LM, Müllner M. Carborane-containing polymers: Synthesis, properties, and applications. ACS Polym Au. 2024;4(1):7–33. doi:10.1021/acspolymersau.3c00030
Marfavi A, Kavianpour P, Rendina LM. Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem. 2022;6(7):486–504. doi:10.1038/s41570-022-00400-x
Fox M. Cage C-H⋯X interactions in solid-state structures of icosahedral carboranes. Coord Chem Rev. 2004;248(5–6):457–476. doi:10.1016/j.ccr.2003.10.002
Liu X-R, Cui P-F, García-Rodeja Y, Solà M, Jin G-X. Formation and reactivity of a unique M⋯C-H interaction stabilized by carborane cages. Chem Sci. 2024;15(24):9274–9280. doi:10.1039/d4sc01158a
Prasanth D, Sunitha DV, Kumar PR, Darshan GP. Design strategies, luminescence mechanisms, and solid-state lighting applications of lanthanide-doped phosphorescent materials. ChemPhysMater. 2024;9:4. doi:10.1016/j.chphma.2024.09.004
Wang T, Su X, Zhang Xuepeng, Huang W, Huang L, Zhang Xingyuan, Sun X, Luo Y, Zhang G. A combinatory approach towards the design of organic polymer luminescent materials. J Mater Chem C Mater Opt Electron Devices. 2019;7(32):9917–9925. doi:10.1039/c9tc02266j
Achelle S, Rodríguez-López J, Guen FR-L. Photoluminescence properties of aryl‐, arylvinyl‐, and arylethynylpyrimidine derivatives. ChemistrySelect. 2018;3(6):1852–1886. doi:10.1002/slct.201702472
Raheem AA, Praveen C. π-Distorted charge transfer chromophores and their materials chemistry in organic photovoltaics. J Mater Chem C Mater Opt Electron Devices. 2024;12(24):8611–8646. doi:10.1039/d4tc01424c
Meng Y, Lin X, Huang J, Zhang L. Recent advances in carborane-based crystalline porous materials. Molecules. 2024;29(16):3916. doi:10.3390/molecules29163916
Kim S, Lee JH, So H, Ryu J, Lee J, Hwang H, Kim Y, Park MH, Lee KM. Spirobifluorene-based o-carboranyl compounds: Insights into the rotational effect of carborane cages on photoluminescence. Chem. 2020;26(2):548–557. doi:10.1002/chem.201904491
Wang H. Recent advances on carborane-based ligands in low-valent group 13 and group 14 elements chemistry. Chin Chem Lett. 2022;33(8):3672–3680. doi:10.1016/j.cclet.2021.12.016
Pigot C, Noirbent G, Brunel D, Dumur F. Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. Eur Polym J. 2020;133(109797):109797. doi:10.1016/j.eurpolymj.2020.109797
Pal A, Karmakar M, Bhatta SR, Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev. 2021;448(214167):214167. doi:10.1016/j.ccr.2021.214167
Kato S-I, Diederich F. Non-planar push-pull chromophores. Chem Commun (Camb). 2010;46(12):1994–2006. doi:10.1039/b926601a
Raghava T, Banerjee S. Amino-terephthalonitrile and amino-terephthalate-based single benzene fluorophores - compact color tunable molecular dyes for bioimaging and bioanalysis. Chem Asian J. 2024;19(23):e202400898. doi:10.1002/asia.202400898
Rammohan A, Mallikarjuna Reddy G, Khasanov AF, Chalapathi U, Santra S, Zyryanov GV, Park S-H. Aurone synthesis and fluorescence properties for chemosensory, optoelectronic and biological applications: A review. Dyes Pigm. 2024;223(111967):111967. doi:10.1016/j.dyepig.2024.111967
Verbitskiy EV, Lipunova GN, Nosova EV, Charushin VN. 2023. Advances in the design of functionalized 1,4-diazines as components for photo- or/and electroactive materials. Dyes Pigm. 2023;220(111763):111763. doi:10.1016/j.dyepig.2023.111763
Lavrinchenko IA, Moseev TD, Varaksin MV, Charushin VN, Chupakhin ON. Luminophores based on 2H-1,2,3-triazoles: synthesis, photophysical properties, and application prospects. Russ Chem Rev. 2024;93(10):RCR5130. doi:10.59761/rcr5130
Lipunova GN, Nosova EV, Zyryanov GV, Charushin VN, Chupakhin ON. 1,2,4,5-Tetrazine derivatives as components and precursors of photo- and electroactive materials. Org Chem Front. 2021;8(18):5182–5205. doi:10.1039/d1qo00465d
Nosova EV, Lipunova GN, Zyryanov GV, Charushin VN, Chupakhin ON. Functionalized 1,3,5-triazine derivatives as components for photo- and electroluminescent materials. Org Chem Front. 2022;9(23):6646–6683. doi:10.1039/d2qo00961g
Ordóñez-Hernández J, Planas JG, Núñez R. Carborane-based BODIPY dyes: synthesis, structural analysis, photophysics and applications. Front Chem. 2024;12:1485301. doi:10.3389/fchem.2024.1485301
Ran Z, Zhao M, Shi J, Ji L. 2025. Luminescent o-carboranyl-containing molecules: A promising platform for stimuli-responsive smart materials. Dyes Pigm. 232(112484):112484. doi:10.1016/j.dyepig.2024.112484.
Tanaka K, Gon M, Ito S, Ochi J, Chujo Y. Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord Chem Rev. 2022;472(214779):214779. doi:10.1016/j.ccr.2022.214779
Mukherjee S, Thilagar P. Boron clusters in luminescent materials. Chem Commun (Camb). 2016;52(6):1070–1093. doi:10.1039/c5cc08213g
Núñez R, Tarrés M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem Rev. 2016;116(23):14307–14378. doi:10.1021/acs.chemrev.6b00198
Ochi J, Tanaka K, Chujo Y. Recent progress in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew Chem Int Ed Engl. 2020;59(25):9841–9855. doi:10.1002/anie.201916666
Smyshliaeva LA, Varaksin MV, Charushin VN, Chupakhin ON. Azaheterocyclic derivatives of ortho-carborane: Synthetic strategies and application opportunities. Synthesis (Mass). 2020;52(03):337–352. doi:10.1055/s-0039-1690733
Zhao D, Xie Z. Recent advances in the chemistry of carborynes. Coord Chem Rev. 2016;314:14–33. doi:10.1016/j.ccr.2015.07.011
Gon M, Tanaka K, Chujo Y. 2019. Concept of excitation-driven boron complexes and their applications for functional luminescent materials. Bull Chem Soc Jpn. 2019;92(1):7–18. doi:10.1246/bcsj.20180245
Ferrer-Ugalde A, Juárez-Pérez EJ, Teixidor F, Viñas C, Sillanpää R, Pérez-Inestrosa E, Núñez R. Synthesis and characterization of new fluorescent styrene-containing carborane derivatives: the singular quenching role of a phenyl substituent. Chem. 2012;18(2):544–553. doi:10.1002/chem.201101881
Cabrera-González J, Viñas C, Haukka M, Bhattacharyya S, Gierschner J, Núñez R. Photoluminescence in carborane-stilbene triads: A structural, spectroscopic, and computational study. Chem. 2016;22(38):13588–13598. doi:10.1002/chem.201601177
Ferrer-Ugalde A, Cabrera-González J, Juárez-Pérez EJ, Teixidor F, Pérez-Inestrosa E, Montenegro JM, Sillanpää R, Haukka M, Núñez R. Carborane-stilbene dyads: the influence of substituents and cluster isomers on photoluminescence properties. Dalton Trans. 2017;46(7):2091–2104. doi:10.1039/c6dt04003a
Cabrera-González J, Bhattacharyya S, Milián-Medina B, Teixidor F, Farfán N, Arcos-Ramos R, Vargas-Reyes V, Gierschner J, Núñez R. Tetrakis[( p ‐dodecacarboranyl)methyl]stilbenylethylene: A luminescent tetraphenylethylene (TPE) core system: Tetrakis[(p-dodecacarboranyl)methyl]stilbenylethylene: A luminescent tetraphenylethylene (TPE) core system. Eur J Inorg Chem. 2017;38–39:4575–4580. doi:10.1002/ejic.201700453
Chaari M, Cabrera-González J, Kelemen Z, Viñas C, Ferrer-Ugalde A, Choquesillo-Lazarte D, Ben Salah A, Teixidor F, Núñez R. Luminescence properties of carborane-containing distyrylaromatic systems. J Organomet Chem. 2018;865:206–213. doi:10.1016/j.jorganchem.2018.03.002
Becerra-González JG, Peña-Cabrera E, Belmonte-Vázquez JL. From blue to red. Reaching the full visible spectrum with a single fluorophore: BODIPY. Tetrahedron. 2024;168(134334):134334. doi:10.1016/j.tet.2024.134334
Prandi C, Núñez R, Bellomo C, Blangetti M, Deagostino A, Lombardi C, Viñas C, Cabrera-González J, Chaari M, Nerea Gaztelumendi N, et al. Carborane-BODIPY dyads: New photoluminescent materials through an efficient Heck coupling. Chem. 2018. doi:10.1002/chem.201802901
Bellomo C, Zanetti D, Cardano F, Sinha S, Chaari M, Fin A, Maranzana A, Núñez R, Blangetti M, Prandi C. 2021. Red light-emitting Carborane-BODIPY dyes: Synthesis and properties of visible-light tuned fluorophores with enhanced boron content. Dyes Pigm. 2021;194(109644):109644. doi:10.1016/j.dyepig.2021.109644
Nar I, Atsay A, Buyruk A, Pekbelgin Karaoğlu H, Burat AK, Hamuryudan E. BODIPY–ortho-carborane–tetraphenylethylene triad: synthesis, characterization, and properties. New J Chem. 2019;43(11):4471–4476. doi:10.1039/c9nj00177h
Cabrera-González J, Ferrer-Ugalde A, Bhattacharyya S, Chaari M, Teixidor F, Gierschner J, Núñez R. Fluorescent carborane–vinylstilbene functionalised octasilsesquioxanes: synthesis, structural, thermal and photophysical properties. J Mater Chem C Mater Opt Electron Devices. 2017;5(39):10211–10219. doi:10.1039/c7tc03319b
Xie L-H, Yang S-H, Lin J-Y, Yi M-D, Huang W. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics. Philos Trans A Math Phys Eng Sci. 2013;371(2000):20120337. doi:10.1098/rsta.2012.0337
Ferrer-Ugalde A, González-Campo A, Viñas C, Rodríguez-Romero J, Santillan R, Farfán N, Sillanpää R, Sousa-Pedrares A, Núñez R, Teixidor F. Fluorescence of new o-carborane compounds with different fluorophores: can it be tuned? Chem. 2014;20(32):9940–9951. doi:10.1002/chem.201402396
Zhu L, Lv W, Liu S, Yan H, Zhao Q, Huang W. Carborane enhanced two-photon absorption of tribranched fluorophores for fluorescence microscopy imaging. Chem Commun (Camb). 2013;49(90):10638–10640. doi:10.1039/c3cc46276e
Smyshliaeva LA, Varaksin MV, Fomina EI, Joy MN, Bakulev VA, Charushin VN, Chupakhin ON. Cu(I)-catalyzed cycloaddition of vinylacetylene ortho-carborane and arylazides in the design of 1,2,3-triazolyl-modified vinylcarborane fluorophores. Organometallics. 2020;39(20):3679–3688. doi:10.1021/acs.organomet.0c00478
Guo J, Liu D, Zhang Jiahui, Zhang Jiji, Miao Q, Xie Z. o-Carborane functionalized pentacenes: synthesis, molecular packing and ambipolar organic thin-film transistors. Chem Commun (Camb). 2015;51(60):12004–12007. doi:10.1039/c5cc03608a
Wu X, Guo J, Quan Y, Jia W, Jia D, Chen Y, Xie Z. Cage carbon-substitute does matter for aggregation-induced emission features of o-carborane-functionalized anthracene triads. J Mater Chem C Mater Opt Electron Devices. 2018;6(15):4140–4149. doi:10.1039/c8tc00380g
Yuhara K, Tanaka K. Direction switching and self‐recovering mechanochromic luminescence of anthracene‐modified o‐carboranes. Chem. 2023;29(44). doi:10.1002/chem.202301189
Nishino K, Yamamoto H, Tanaka K, Chujo Y. Solid‐state thermochromic luminescence through twisted intramolecular charge transfer and excimer formation of a Carborane−Pyrene dyad with an ethynyl spacer. Asian J Org Chem. 2017;6(12):1818–1822. doi:10.1002/ajoc.201700390
Nishino K, Yamamoto H, Ochi J, Tanaka K, Chujo Y. Time-dependent emission enhancement of the ethynylpyrene-o-carborane dyad and its application as a luminescent color sensor for evaluating water contents in organic solvents. Chem Asian J. 2019;14(9):1577–1581. doi:10.1002/asia.201900396
Yamamoto H, Ochi J, Yuhara K, Tanaka K, Chujo Y. Switching between intramolecular charge transfer and excimer emissions in solids based on aryl-modified ethynyl‒o-carboranes. Cell Rep Phys Sci. 2022;3(2):100758. doi:10.1016/j.xcrp.2022.100758
Ochi J, Tanaka K, Chujo Y. Dimerization-induced solid-state excimer emission showing consecutive thermochromic luminescence based on acridine-modified o-carboranes. Inorg Chem. 2021;60(12):8990–8997. doi:10.1021/acs.inorgchem.1c00901
Ochi J, Tanaka K, Chujo Y. Improvement of solid-state excimer emission of the aryl-ethynyl-o -carborane skeleton by acridine introduction: Improvement of solid-state excimer emission of the aryl-ethynyl-o -carborane skeleton by acridine introduction. Eur J Org Chem. 2019;19:2984–2988. doi:10.1002/ejoc.201900212
Jin GF, Cho Y-J, Wee K-R, Hong SA, Suh I-H, Son H-J, Lee J-D, Han W-S, Cho DW, Kang SO. BODIPY functionalized o-carborane dyads for low-energy photosensitization. Dalton Trans. 2015;44(6):2780–2787. doi:10.1039/c4dt03123g
Kokado K, Tokoro Y, Chujo Y. 2009. Luminescent and axially chiral π-conjugated polymers linked by carboranes in the main chain. Macromolecules. 2009;42(23):9238–9242. doi:10.1021/ma902094u
Kokado K, Chujo Y. Emission via aggregation of alternating polymers with o-carborane and p-Phenylene−Ethynylene sequences. Macromolecules. 2009;42(5):1418–1420. doi:10.1021/ma8027358
Kokado K, Chujo Y. Polymer reaction of poly(p-phenylene–ethynylene) by addition of decaborane: modulation of luminescence and heat resistance. Polym J. 2010;42(5):363–367. doi:10.1038/pj.2010.13
Kokado K, Tominaga M, Chujo Y. Aromatic ring-fused carborane-based luminescent π-conjugated polymers. Macromol Rapid Commun. 2010;31(15):1389–1394. doi:10.1002/marc.201000160
Kokado K, Nagai A, Chujo Y. Energy transfer from aggregation-induced emissive o-carborane. Tetrahedron Lett. 2011;52(2):293–296. doi:10.1016/j.tetlet.2010.11.026
Kokado K, Chujo Y. Multicolor tuning of aggregation-induced emission through substituent variation of diphenyl-o-carborane. J Org Chem. 2011;76(1):316–319. doi:10.1021/jo101999b
Fang W, Liu K, Wang G, Liang Y, Huang R, Liu T, Ding L, Peng J, Peng H, Fang Y. Dual-phase emission AIEgen with ICT properties for VOC chromic sensing. Anal Chem. 2021;93(24):8501–8507. doi:10.1021/acs.analchem.1c00980
Bureš F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014;4(102):58826–58851. doi:10.1039/c4ra11264d
Son MR, Cho Y-J, Kim S-Y, Son H-J, Cho DW, Kang SO. Direct observation of the photoinduced electron transfer processes of bis(4-arylphenylamino benzo)-ortho-carborane using transient absorption spectroscopic measurements. Phys Chem Chem Phys. 2017;19(36):24485–24492. doi:10.1039/c7cp04505k
Wang Z, Jiang P, Wang T, Moxey GJ, Cifuentes MP, Zhang C, Humphrey MG. Blue-shifted emission and enhanced quantum efficiency viaπ-bridge elongation in carbazole-carborane dyads. Phys Chem Chem Phys. 2016;18(23):15719–15726. doi:10.1039/c6cp02870e
Kokado K, Chujo Y.. A luminescent coordination polymer based on bisterpyridyl ligand containing o-carborane: two tunable emission modes. Dalton Trans. 2011;40(9):1919–1923. doi:10.1039/c1dt90011k
Nishino K, Uemura K, Tanaka K, Chujo Y. Dual emission via remote control of molecular rotation of o-carborane in the excited state by the distant substituents in tolane-modified dyads. New J Chem. 2018;42(6):4210–4214. doi:10.1039/c7nj04283c
Wada K, Hashimoto K, Ochi J, Tanaka K, Chujo Y. Rational design for thermochromic luminescence in amorphous polystyrene films with bis‐o‐carborane‐substituted enhanced conjugated molecule having aggregation‐induced luminochromism. Aggregate (Hoboken). 2021;2(5). doi:10.1002/agt2.93
Mori H, Nishino K, Wada K, Morisaki Y, Tanaka K, Chujo Y. Modulation of luminescence chromic behaviors and environment-responsive intensity changes by substituents in bis-o-carborane-substituted conjugated molecules. Mater Chem Front. 2018;2(3):573–579. doi:10.1039/c7qm00486a
Liang S, Jiang X, Xiao C, Li C, Chen Q, Li W. Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells. Acc Chem Res. 2021;54(9):2227–2237. doi:10.1021/acs.accounts.1c00070
Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Rylene and related diimides for organic electronics. Adv Mater. 2011;23(2):268–284. doi:10.1002/adma.201001402
Shang C, Wang G, Wei Y-C, Jiang Q, Liu K, Zhang M, Chen Y-Y, Chang X, Liu F, Yin S, et al. Excimer formation of perylene bisimide dyes within stacking-restrained folda-dimers: Insight into anomalous temperature responsive dual fluorescence. CCS Chem. 2022;4(6):1949–1960. doi:10.31635/ccschem.021.202100871
Jiang Q, Wang Z, Wang G, Liu K, Xu W, Shang C, Gou X, Liu T, Fang Y. A configurationally tunable perylene bisimide derivative‐based fluorescent film sensor for the reliable detection of volatile basic nitrogen towards fish freshness evaluation. Chin J Chem. 2022;40(2):201–208. doi:10.1002/cjoc.202100626
Gao X, Huang R, Fang W, Huang W, Yin Z, Liu Y, Huang X, Ding L, Peng H, Fang Y. A portable fluorescence sensor with improved performance for aniline monitoring. Adv Mater Interfaces. 2022;9(34):2201275. doi:10.1002/admi.202201275
Harriman A, Alamiry MAH, Hagon JP, Hablot D, Ziessel R. Through‐space electronic energy transfer across proximal molecular dyads. Angew Chem Int Ed Engl. 2013;52(26):6611–6615. doi:10.1002/anie.201302081
Labra-Vázquez P, Flores-Cruz R, Galindo-Hernández A, Cabrera-González J, Guzmán-Cedillo C, Jiménez-Sánchez A, Lacroix PG, Santillan R, Farfán N, Núñez R. Tuning the cell uptake and subcellular distribution in BODIPY-carboranyl dyads: An experimental and theoretical study. Chemistry. 2020;26(69):16530–16540. doi:10.1002/chem.202002600
Moseev TD, Idrisov TA, Varaksin MV, Tsmokaluk AN, Charushin VN, Chupakhin ON. Copper-catalyzed Sonogashira-type coupling reaction of vinylacetylene ortho-carborane with boronic acid in the synthesis of luminophores with phosphorescent emission. Reactions. 2024;5(4):868–882. doi:10.3390/reactions5040046
Zhang Y, Lalancette R, Galoppini E. Properties of o-carborane triads: Non-covalent σ…π interactions and intermolecular charge transfer. ChemRxiv. 2024. doi:10.26434/chemrxiv-2024-t6khm
DOI: https://doi.org/10.15826/chimtech.2025.12.2.13
Copyright (c) 2025 Timofey D. Moseev, Tair A. Idrisov, Mikhail V. Varaksin, Valery N. Charushin, Oleg N. Chupakhin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice