Cover Image

Transport and structural properties of (CH3)4NBF4 with nanodiamonds filler

Ivan Stebnitskii, Yulia Mateyshina, Nikolai Uvarov

Abstract


Composite solid electrolytes are promising materials for electrochemical devices. The most interesting ionic components for them are salts of substituted ammonium due to their high thermal and electrochemical stability, but the properties of composites based on them are poorly understood. Composite solid electrolytes based on the substituted ammonium salt (CH3)4NBF4 with highly dispersed nanodiamonds CND with specific surface area Ssp = 300±20 m2/g in a wide range of filler concentrations have been synthesized for the first time. It was found by X-ray diffraction method that the introduction of СND leads to the amorphization of the salt. The highest conductivity values are characterized by the composite 0.03(СH3)4NBF– 0.97CND (σ = 4.2∙10–3 S/cm at 300 °C), whose electrical conductivity is 3-4 orders of magnitude higher than that of the original salt. Modeling the concentration dependence of the electrical conductivity of the composites using the mixing equation showed that the reason for the increase in electrical conductivity is the formation of an amorphous salt layer, the electrical conductivity of which is 4–5 orders of magnitude higher than that of the crystalline phase (CH3)4NBF4.

Keywords


Substituted ammonium salts; Tetramethylammonium tetrafluoroborate; Nanodiamonds; Transport properties

Full Text:

PDF

References


Zhang Z, Wang X, Li X, Zhao J, Liu G, Yu W, Dong X, Wang J. Review on Composite Solid Electrolytes for Solid-State Lithium-Ion Batteries. Mater Today Sustain. 2023;21:100316. doi:10.1016/j.mtsust.2023.100316

Dirican M, Yan C, Zhu P, Zhang X. Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Mater Sci Eng R Rep. 2019;136:27–46. doi:10.1016/j.mser.2018.10.004

Liu Q, Jiang L, Zheng P, Sun J, Liu C, Chai J, Li X, Zheng Y, Liu Z. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All‐Solid‐State Batteries. Chem Rec. 2022;22(10):e202200116. doi:10.1002/tcr.202200116

Voropaeva DYu, Stenina IA, Yaroslavtsev AB. Solid-State Electrolytes: A Way to Increase the Power of Lithium-Ion Batteries. Russ Chem Rev. 2024;93(6):RCR5126. doi:10.59761/RCR5126

Xue S, Chen S, Fu Y, Zhu H, Ji Y, Song Y, Pan F, Yang L. Revealing the Role of Active Fillers in Li‐ion Conduction of Composite Solid Electrolytes. Small. 2023;19(46):2305326.

Kumaravel V, Bartlett J, Pillai SC. Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors. Adv Energy Mater. 2021;11(3):2002869. doi:10.1002/aenm.202002869

Uvarov NF. Composite Solid Electrolytes: Recent Advances and Design Strategies. J Solid State Electrochem. 2011;15(2):367–389. doi:10.1007/s10008-008-0739-4

Liu S, Liu W, Ba D, Zhao Y, Ye Y, Li Y, Liu J. Filler‐integrated Composite Polymer Electrolyte for Solid‐state Lithium Batteries. Adv Mater. 2023;35(2):2110423.

Zheng F, Li C, Li Z, Cao X, Luo H, Liang J, Zhao X, Kong J. Advanced Composite Solid Electrolytes for Lithium Batteries: Filler Dimensional Design and Ion Path Optimization. Small. 2023;19(21):2206355. doi:10.1002/smll.202206355

Ponomareva VG, Bagryantseva IN, Shutova ES. Hybrid Systems Based on Nanodiamond and Cesium Dihydrogen Phosphate. Mater Today Proc. 2020;25:521–524. doi:10.1016/j.matpr.2020.01.304

Kubataev ZYu, Gafurov MM, Rabadanov KSh, Amirov AM, Akhmedov MA, Kakagasanov MG. The Effect of the Nanosized Oxide Filler on the Structure and Conductivity of Composite (1 – x)(LiClO4–NaClO4)–xAl2O3. Russ J Electrochem. 2023;59(8):598–603. doi:10.1134/S1023193523080050

Guseva AF, Pestereva NN, Kuznetsov DK, Boyarshinova AA, Gardt VA. Conductivity of Composites MeWO4–Al2O3 (Me = Ca, Sr). Russ J Electrochem. 2023;59(4):284–290. doi:10.1134/S1023193523040079

Zhu H, MacFarlane DR, Pringle JM, Forsyth M. Organic Ionic Plastic Crystals as Solid-State Electrolytes. Trends Chem. 2019;1(1):126–140. doi:10.1016/j.trechm.2019.01.002

Pringle JM, Howlett PC, MacFarlane DR, Forsyth M. Organic Ionic Plastic Crystals: Recent Advances. J Mater Chem. 2010;20(11):2056. doi:10.1039/b920406g

Pringle JM. Recent Progress in the Development and Use of Organic Ionic Plastic Crystal Electrolytes. Phys Chem Chem Phys. 2013;15(5):1339–1351. doi:10.1039/C2CP43267F

MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Ohno H, Watanabe M, Yan F, Zheng W, Zhang S, Zhang J. Ionic Liquids and Their Solid-State Analogues as Materials for Energy Generation and Storage. Nat Rev Mater. 2016;1(2):15005. doi:10.1038/natrevmats.2015.5

Thomas ML, Hatakeyama-Sato K, Nanbu S, Yoshizawa-Fujita M. Organic Ionic Plastic Crystals: Flexible Solid Electrolytes for Lithium Secondary Batteries. Energy Adv. 2023;2(6):748–764. doi:10.1039/D3YA00078H

Taniki R, Matsumoto K, Nohira T, Hagiwara R. All Solid-State Electrochemical Capacitors Using N,N-Dimethylpyrrolidinium Fluorohydrogenate as Ionic Plastic Crystal Electrolyte. J Power Sources. 2014;245:758–763. doi:10.1016/j.jpowsour.2013.07.020

Adebahr J, Ciccosillo N, Shekibi Y, Macfarlane D, Hill A, Forsyth M. The “Filler-Effect” in Organic Ionic Plastic Crystals: Enhanced Conductivity by the Addition of Nano-Sized TiO2. Solid State Ionics. 2006;177(9–10):827–831. doi:10.1016/j.ssi.2006.02.022

Pringle JM, Shekibi Y, MacFarlane DR, Forsyth M. The Influence of Different Nanoparticles on a Range of Organic Ionic Plastic Crystals. Electrochim Acta. 2010;55(28):8847–8854. doi:10.1016/j.electacta.2010.08.027

Stebnitskii I, Mateyshina Y, Uvarov N. The Effect of Silicon Dioxide on the Structural, Thermal and Transport Properties of an Organic Ionic Plastic Crystal (n-C4H9)4NBF4. Chim Techno Acta. 2024;11(3):202411307.

Mateyshina Y, Stebnitskii I, Uvarov N. Composite Solid Electrolytes (n-C4H9)4NBF4–Nanodiamonds. Solid State Ionics. 2024;404:116419. doi:10.1016/j.ssi.2023.116419

Toby BH, Von Dreele RB. GSAS-II : The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J Appl Crystallogr. 2013;46(2):544–549. doi:10.1107/S0021889813003531

Zabinska G, Ferloni P, Sanesi M. On the Thermal Behaviour of Some Tetraalkylammonium Tetrafluoroborates. Thermochim Acta. 1987;122(1):87–94. doi:10.1016/0040-6031(87)80108-9

Matsumoto K, Harinaga U, Tanaka R, Koyama A, Hagiwara R, Tsunashima K. The Structural Classification of the Highly Disordered Crystal Phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] Salts (Nn+ = Tetraalkylammonium and Pn+ = Tetraalkylphosphonium). Phys Chem Chem Phys. 2014;16(43):23616–23626. doi:10.1039/C4CP03391D

Giuseppetti G, Mazzi F, Tadini C, Ferloni P, Torre S. The Crystal Structure of Tetramethylammonìum Tetrafluoroborate,(CH3)4NBF4, and the Disorder of the BF-4 Ion. Z fur Krist - Cryst Mater. 1992;202(1–4):81–88.

Himabindu B, Latha Devi NSMP, Rajini Kanth B. Microstructural Parameters from X-Ray Peak Profile Analysis by Williamson-Hall Models; A Review. Mater Today Proc. 2021;47:4891–4896. doi:10.1016/j.matpr.2021.06.256

Stebnitsky IA, Uvarov NF, Mateyshina YuG. Synthesis and Study of the Physicochemical Properties of Composite Solid Electrolytes (C4H9)3CH3NBF4–Cnanodiamonds. Russ J Electrochem. 2024;60(1):18–24. doi:10.1134/S1023193524010105

Alekseev DV, Mateyshina YuG, Uvarov NF. Effect of Nanodiamond Additives on the Ionic Conductivity of the (C2H5)3CH3NBF4 Organic Salt. Russ J Electrochem. 2022;58(7):594–599. doi:10.1134/S1023193522070035

Uvarov NF, Iskakova AA, Bulina NV, Gerasimov KB, Slobodyuk AB, Kavun VYa. Ion Conductivity of the Plastic Phase of the Organic Salt [(C4H9)4N]BF4. Russ J Electrochem. 2015;51(5):491–494. doi:10.1134/S102319351505016X




DOI: https://doi.org/10.15826/chimtech.2024.12.2.09

Copyright (c) 2025 Ivan Stebnitskii, Yulia Mateyshina, Nikolai Uvarov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice