Cover Image

Temperature- and water-induced structural transformations in Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3-δ proton conducting electrolyte

Ivan Ivanov, Dmitry Tsvetkov, Vladimir Sereda, Dmitry Malyshkin, Anna Sereda, Petr Zakiryanov, Roman Yagovitin, Andrey Zuev

Abstract


The crystal structure of Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3–δ was studied depending on temperature in dry and wet atmosphere using in situ high temperature X-ray powder diffraction. Phase transition from tetragonal I4/mcm to cubic Pm-3m structure was shown to occur in Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3–δ upon heating from 25 up to 1000 °C irrespective of air humidity. The cubic Pm m and tetragonal I4/mcm phases possess comparable coefficients of linear thermal expansion (CTEs), 10.6·10–6 K–1. Even in very dry atmosphere (10–4 atm H2O), chemical expansion caused by hydration contributes significantly to the observed structural transformations and the variation of the unit cell parameters of Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3–δ.

Keywords


proton-conducting electrolyte; phase transition; hydration of oxides; thermochemical expansion

Full Text:

PDF

References


Nomura K, Shimada H, Yamaguchi Y, Shin W, Okuyama Y, Mizutani Y. Phase Transitions, Thermal Expansions, Chemical Expansions, and CO2 Resistances of Ba(Ce0.8–xZrxY0.1Yb0.1)O3–δ (x = 0.1, 0.4) Perovskite-Type Proton Conductors. J Electrochem Soc. 2022;169:024516. doi:10.1149/1945-7111/ac5480

Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Sci.2009;326:126–129. doi:10.1126/science.1174811

Mirfakhraei B, Ramezanipour F, Paulson S, Birss V, Thangadurai V. Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr0.1Ce0.7Y0.1M0.1O3–δ (M=Fe, Ni, Co, and Yb). Fron Energy Res. 2014;2:9. doi:10.3389/fenrg.2014.00009

Wang X, Si X, Li C, Guo X, Cao J. Joining the BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte to AISI 441 interconnect for protonic ceramic fuel cell applications: interfacial microstructure and long-term stability, ACS Appl Energy Mater. 2021;4:7346–7354. doi:10.1021/acsaem.1c01491

He F, Teng Z, Yang G, Zhou C, Guan D, Chen S, Ran R, Wang W, Zhou W, Shao Z. Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. J Power Sources. 2020;460:228105. doi:10.1016/j.jpowsour.2020.228105

Liu Z, Chen Y, Yang G, Yang M, Ji R, Song Y, Ran R, Zhou W, Shao Z. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells. Appl Catal B Environ. 2022;319:121929. doi:10.1016/j.apcatb.2022.121929

Wan Y, He B, Wang R, Ling Y, Zhao L. Effect of co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3–δ for protonic ceramic fuel cells. J Power Sources. 2017;347:14–20. doi:10.1016/j.jpowsour.2017.02.049

Yang S, Zhang S, Sun S, Ye X, Wen Z. Lattice incorporation of Cu2+ into the BaCe0.7Zr0.1Y0.1Yb0.1O3-δ electrolyte on boosting its sintering and protonconducting abilities for reversible solid oxide cells. ACS Appl Mater Interfaces. 2018;10:42387–42396. doi:10.1021/acsami.8b15402

Zhang Y, Xie D, Chi B, Pu J, Li J, Yan D. Basic properties of proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3–δ (BZCYYb) material. Asia-Pacific J Chem Eng. 2019;14(4):e2322. doi:10.1002/apj.2322

Hamze L, Suard E, Joubert O, Quarez E. Synthesis and temperature dependence of the crystal structure of proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3–δ (BZCYYb1711) by combined neutron and X-ray diffraction. Solid State Ionics. 2024;417:116682. doi:10.1016/j.ssi.2024.116682

Sereda V, Tsvetkov D, Malyshkin D, Ivanov I, Sednev-Lugovets A, Zuev A. Hydration-induced chemical expansion of BaCa(1+y)/3Nb(2−y)/3O3−δ∙xH2O (BCN) and other proton-conducting perovskite oxides. Solid State Ionics. 2020;358:115516. doi:10.1016/j.ssi.2020.115516




DOI: https://doi.org/10.15826/chimtech.2024.11.4.22

Copyright (c) 2024 Ivan Ivanov, Dmitry Tsvetkov, Vladimir Sereda, Dmitry Malyshkin, Anna Sereda, Petr Zakiryanov, Roman Yagovitin, Andrey Zuev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International