Voltammetric electronic tongue for identification the pharmaceutical preparations of naproxen
Abstract
A multisensory system of the "electronic tongue" type was developed based on glassy carbon electrodes modified with PEC@GO, PEC@SWCNT, PEC@CB and PEC@CP composites for the identification of pharmaceutical preparations of naproxen using differential pulse voltammetry. To improve the reliability of voltammetric recognition of pharmaceutical preparations of naproxen, chemometric data processing using PCA and SIMCA was proposed. It was shown that the multisensory system of the "electronic tongue" type correctly distinguishes 100% of the samples. To achieve such a degree of recognition, the multisensory system should include at least 4 sensors. The accuracy of recognition was tested on 3 samples of commercially available naproxen pharmaceuticals: "Nalgesin", "Teraliv", and "Nexemezin", produced by different manufacturers.
Keywords
Full Text:
PDFReferences
Pozhilova EV, Novikov VE, Guseva ES, Savchenko AV. Counterfeit medicines and combating in the Russian Federation. Rev Clin Pharmacol Drug Therapy. 2020;18(1):63–70. doi:10.17816/RCF18163-70
Figueroa G, Palacio LA, Ray BD, Petrache HI, Lopez-Yunez A. Detecting Counterfeit Pharmaceuticals through UV Spectrophotometry. Biophys J. 2015;108(2):622a. doi:10.1016/j.bpj.2014.11.3383
Song W, Quan P, Li S, Liu C, Lv S, Zhao Y, Fang L. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. J Controlled Release. 2016;227:13–22. doi:10.1016/j.jconrel.2016.02.027
Long Z, Zhan Z, Guo Z, Li Y, Yao J, Ji F, Li C, Zheng X, Ren B, Huang T. A novel two-dimensional liquid chromatography - Mass spectrometry method for direct drug impurity identification from HPLC eluent containing ion-pairing reagent in mobile phases. Anal Chim Acta. 2019;1049:105–114. doi:10.1016/j.aca.2018.10.031
Holzgrabe U, Malet-Martino M. Analytical challenges in drug counterfeiting and falsification—the NMR approach. J Pharm Biomed Anal. 2011;55:679–687. doi:10.1016/j.jpba.2010.12.017
Pein M, Kirsanov D, Ciosek P, del Valle M, Yaroshenko I, Wesoły M, Zabadaj M, Gonzalez-Calabuig A, Wróblewski W, Legin A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J Pharm Biom Anal. 2015;114:321–329. doi:10.1016/j.jpba.2015.05.026
Jaballah MB, Ceto´ X, Dridi C, Prieto-Simón B. Voltammetric electronic tongue for the discrimination of antibiotic mixtures in tap water. J Environ Chem Eng. 2024;12:113831. doi:10.1016/j.jece.2024.113831
Wesoły M, Zabadaj M, Cal K, Ciosek-Skibinska P, Wróblewski W, Dissolution studies of metamizole sodium and pseudoephedrine sulphate dosage forms − comparison and correlation of electronic tongue results with reference studies. J Pharm Biomed Anal. 2018;149:242–248. doi:10.1016/j.jpba.2017.11.009
Beluginaa RB, Monakhova YB, Rubtsova E, Becht A, Schollmayer C, Holzgrabee U, Legina AV, Kirsanov DO, Distinguishing paracetamol formulations: Comparison of potentiometric “Electronic Tongue” with established analytical techniques. J Pharmaceutical Biomed Anal. 2020;188:113457. doi:10.1016/j.jpba.2020.113457
Yarkaeva YA, Dubrovskii DI, Zil'berg RA, Maistrenko VN. Voltammetric Sensors and Sensor System Based on Gold Electrodes Modified with Polyarylenephthalides for Cysteine Recognition. Russ J Electrochem. 2020;56(7):544–555. doi:10.1134/S102319352007006X
Zil'berg RA, Yarkaeva YuA, Maksyutova EI, Sidel’nikov AV, Maistrenko VN. Voltammetric identification of insulin and its analogues using glassy carbon electrodes modified with polyarylenephthalides. J Anal Chem. 2017;72(4):348–356. doi:10.1134/S1061934817040177
Zilberg RA, Yarkaeva YuA, Dubrovsky DI, Zagitova LR, Maistrenko VN. Voltammetric multisensory system based on glassy carbon electrodes modified by polyarylenephthalides for the recognition and determination of warfarin. Anal Control. 2019;23(4):546–556. doi:10.15826/analitika.2019.23.4.003
Vlasov Yu, Legin A, Rudnitskaya A, Natale CDi, D’amico A. Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids: (IUPAC technical report). Pure Appl Chem. 2005;77(11):1965–1983. doi:10.1351/pac200577111965
Vahdatiyekta P, Zniber M, Bobacka J, Huynh T-P. A review on conjugated polymer-based electronic tongues. Anal Chimica Acta. 2022;1221:340114. doi:10.1016/j.aca.2022.340114
Prifitis D. Polyelectrolyte-graphene nanocomposites for biosensing application. Curr Org Chem. 2015;19;1819–1827. doi:10.2174/1385272819666150526005557
Zilberg RA, Teres YuB, Zagitova LR, Yarkaeva YuA, Berestova TV. Voltammetric sensor based on the copper (II) amino acid complex for the determination of tryptophan enantiomers. Anal Control. 2021;25(3):193–204. doi:10.15826/analitika.2021.25.3.006
Kour R, Arya S, Young S-J, Gupta V, Bandhoria P, Khosla A. Recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc. 2020;167(3):037555. doi:10.1149/1945-7111/ab6bc4
Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip. Rev Comput Stat. 2010;2:433–459. doi:10.1002/wics.101
Vitale R, Cocchi M, Biancolillo A, Ruckebusch C, Marini F. Class modelling by Soft Independent Modelling of Class Analogy: why, when, how? A tutorial. Anal Chim Acta. 2023;1270:341304. doi:10.1016/j.aca.2023.341304
Esbensen KH. Multivariate Data Analysis – in practice. An introduction to multivariate data analysis and experimental design. 5th ed. CAMO AS, Oslo; 2001.
Wold S. Pattern recognition by means of disjoint principal components models. Pattern recognit. 1976;8(3):127–139. doi:10.1016/0031-3203(76)90014-5
Mahalanobis, P.C. On the generalized distance in statistics. Proc Nat Institute Sci (Calcutta). 1936;2:49–55. doi:10.1002/9781118445112.stat04808
Kolesov SV, Gurina MS, Mudarisova RK. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinimide. Russ J Gen Chem. 2018;88(8):1694–1698. doi:10.1134/S1070363218080224
Kolesov SV, Gurina MS, Mudarisova RK. On the stability of aqueous nanodispersions of polyelectrolyte complexes based on chitosan and N-succinyl-chitosan. Polym Sci Ser A. 2019;61(3):253–259. doi:10.1134/S0965545X19030076
Todd PA, Clissold SP. Naproxen. A reappraisal of its pharmacology, and therapeutic use in rheumatic diseases and pain states. Drugs.1990;40(1):91. doi:10.2165/00003495-199040010-00006
Roddy E, Clarkson K, Blagojevic-Bucknall M, Mehta R, Oppong R, Avery A, Hay EM, Heneghan C, Hartshorne L, Hooper J, Hughes G, Jowett S, Lewis M, Little P, McCartney K, Mahtani KR, Nunan D, Santer M, Williams S, Mallen CD. Open-label randomised pragmatic trial (CONTACT) comparing naproxen and low-dose colchicine for the treatment of gout flares in primary care. Ann Rheum Dis. 2020;79(2):276. doi:10.1136/annrheumdis-2019-216154
Adhoum N, Monser L, Toumi M, Boujlel K. Determination of naproxen in pharmaceuticals by differential pulse voltammetry at a platinum electrode. Anal Chimica Acta. 2003;495:69–75. doi:10.1016/S0003-2670(03)00922-X
Hung C-M, Huang C-P, Chen C-W, Dong C-D. A poly-(L-serine)/reduced graphene oxide–Nafion supported on glassy carbon (PLS/rGO− Nafion/GCE) electrode for the detection of naproxen in aqueous solutions. Environ Sci Pollut Res. 2022;29:12450–12461. doi:10.1007/s11356-021-15511-z
Montes RHO, Stefano JS, Richter EM, Munoz RAA. Exploring multiwalled carbon nanotubes for naproxen detection. Electroanal. 2014;26(7):1449. doi:10.1002/elan.201400113
Nishanth S, Siddiqu KA. Fabrication of Fe@Ni-orotate coordination polymer composite: iron doping provokes the colorimetric recognition efficiency for naproxen drug and energy storage magnitude. J Molecular Structure. 2024;1311:138457. doi:10.1016/j.molstruc.2024.138457
Zilberg RA, Maistrenko VN, Teres YB, Vakulin IV, Bulysheva EO, Seluyanova AA. A Voltammetric Sensor Based on Aluminophosphate Zeolite and a Composite of Betulinic Acid with a Chitosan Polyelectrolyte Complex for the Identification and Determination of Naproxen Enantiomers. J Anal Chem. 2023;78(7):933–944. doi:10.1134/S1061934823070158
Zilberg RA, Berestova TV, Gizatov RR, Teres YuB, Galimov MN, Bulysheva EO. Chiral selectors in voltammetric sensors based on mixed phenylalanine/alanine Cu(II) and Zn(II) complexes. Inorg. 2022;10(8):117–133. doi:10.3390/inorganics10080117
Zilberg R, Salikhov R, Mullagaliev I. Chitosan-based polyelectrolyte complex in combination with allotropic forms of carbon as a basis of thin-film organic electronics. Chimica Techno Acta. 2024;11(3):202411302. doi:10.15826/chimtech.2024.11.3.02
Salimgareeva ER, Igdisanova DI, Gordeeva DS, Matern AI, Yarkova EA, Gerasimova EL, Ivanova AV. Portable potentiometric device for determining the antioxidantcapacity. Chimica Techno Acta. 2023;10(1):202310104. doi:10.15826/chimtech.2023.10.1.04
Shumyantseva VV, Bulko TV, Presnova GV, Vitaly G. Grigorenko VG, Rubtsova MYu. Electrochemical sensor for the detection of serine β-lactamase catalytic activity. Chimica Techno Acta. 2024;11(4):202411407. doi:10.15826/chimtech.2024.11.4.07
DOI: https://doi.org/10.15826/chimtech.2025.12.2.04
Copyright (c) 2024 R.A. Zilberg, E.O. Bulysheva, Yu.B. Teres, A.A. Volkova, G.I. Ishmakaeva, G.R. Mukhametdinov, I.V. Vakulin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice