Ternary molybdate Rb5(Ag1/3Hf5/3)(MoO4)6: synthesis, structure, thermal expansion and ionic conductivity
Abstract
Keywords
Full Text:
PDFReferences
Kharitonova EP, Voronkova VI, Belov DA, Orlova EI. Fluorite-like compounds with high anionic conductivity in Nd2MoO6 – Bi2O3 system. Int J Hydrogen Energy 2016;41:10053–9. doi: 10.1016/J.IJHYDENE.2016.03.046
Martínez-Lope MJ, Alonso JA, Sheptyakov D, Pomjakushin V. Preparation and structural study from neutron diffraction data of Pr5Mo3O16. J Solid State Chem 2010;183:2974–8. doi:10.1016/J.JSSC.2010.10.015
Berezhnaya TS, Chebyshev KA. Fluorite-like phases in the La2MoO6 – Sm2MoO6 – MoO3 system: Homogeneity region, crystal structure, and conductive properties. Ceram Int 2024;50:49803–13. doi:10.1016/j.ceramint.2024.09.323
Shlyakhtina A V., Lyskov N V., Šalkus T, Kežionis A, Patrakeev M V., Leonidov IA, et al. Conductivity and oxygen diffusion in bixbyites and fluorites Ln6−xMoO12−δ (Ln = Er, Tm; x = 0, 0.5). Int J Hydrogen Energy 2021;46:16965–76. doi:10.1016/j.ijhydene.2021.02.029
Voronkova VI, Leonidov IA, Kharitonova EP, Belov DA, Patrakeev M V., Leonidova ON, et al. Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16. J Alloys Compd 2014;615:395–400. doi:10.1016/j.jallcom.2014.07.019
Schildhammer D, Fuhrmann G, Petschnig L, Kogler M, Penner S, Weinberger N, et al. Ion conductivity in cubically-stabilized fluorite-like structured Er5CeMoO12.5 and Yb5MMoO12.5 (M = Ce, Zr) solid solutions. Solid State Sci 2016;62:22–8. doi:10.1016/j.solidstatesciences.2016.10.011
Get’Man EI, Chebyshev KA, Pasechnik L V., Ardanova LI, Selikova NI, Radio S V. Isomorphous substitutions and conductivity in molybdates Nd5-xLnxMo3O16+y (y∼0.5), where Ln = La, Ce, Pr. J Alloys Compd 2016;686:90–4. doi:10.1016/j.jallcom.2016.06.005
Shlyakhtina A V., Lyskov N V., Kolbanev I V., Shchegolikhin AN, Karyagina OK, Shcherbakova LG. Key trends in the proton conductivity of Ln6−xMoO12−δ (Ln = La, Nd, Sm, Gd -Yb; x = 0, 0.5, 0.6, 0.7, 1) rare-earth molybdates. Int J Hydrogen Energy 2021;46:16989–98. doi:10.1016/j.ijhydene.2021.01.129
Tolstov KS, Politov B V., Zhukov VP, Chulkov E V., Kozhevnikov VL. Oxygen non-stoichiometry and phase decomposition of double perovskite-like molybdates Sr2MMoO6–δ, where M = Mn, Co, and Ni. Mater Lett 2022;316:132039. doi:10.1016/j.matlet.2022.132039
Rajendran DN, Ravindran Nair K, Prabhakar Rao P, Sibi KS, Koshy P, Vaidyan VK. Ionic conductivity in new perovskite type oxides: NaAZrMO6 (A = Ca or Sr; M = Nb or Ta). Mater Chem Phys 2008;109:189–93. doi:10.1016/j.matchemphys.2007.11.033
Panda D, Hota SS, Choudhary RNP. Development of a novel triple perovskite barium bismuth molybdate material for thermistor-based applications. Mater Sci Eng B 2023;296:116616. doi:10.1016/j.mseb.2023.116616
Belyakov SA, Shkerin SN, Kellerman DG, Plekhanov MS. The effect of Mo concentration on the electrical properties of CaV1-xMoxO3-δ (x=0.2 ÷ 0.6) anode materials for solid oxide fuel cells. Mater Res Bull 2020;129:1–7. doi:10.1016/j.materresbull.2020.110904
Filonova EA, Dmitriev AS, Pikalov PS, Medvedev DA, Pikalova EY. The structural and electrical properties of Sr2Ni 0.75Mg0.25MoO6 and its compatibility with solid state electrolytes. Solid State Ionics 2014;262:365–9. doi:10.1016/j.ssi.2013.11.036
Tolstov KY, Politov B V., Zhukov VP, Chulkov E V., Kozhevnikov VL. The impact of atomic defects on high-temperature stability and electron transport properties in Sr2Mg1−xNixMoO6–δ solid solutions. J Alloys Compd 2021;883:160821. doi:10.1016/j.jallcom.2021.160821
Goutenoire F, Isnard O, Retoux R, Lacorre P. Crystal Structure of La2Mo2O9, a New Fast Oxide−Ion Conductor. Chem Mater 2000;12:2575–80. doi:10.1021/CM991199L
Liu X, Fan H, Shi J, Dong G, Li Q. High oxide ion conducting solid electrolytes of bismuth and niobium co-substituted La2Mo2O9. Int J Hydrogen Energy 2014;39:17819–27. doi:10.1016/j.ijhydene.2014.08.110
Marozau IP, Marrero-López D, Shaula AL, Kharton V V., Tsipis E V., Núñez P, et al. Ionic and electronic transport in stabilized β-La2Mo2O9 electrolytes. Electrochim Acta 2004;49:3517–24. doi:10.1016/j.electacta.2004.03.022
Yang J, Wen Z, Gu Z, Yan D. Ionic conductivity and microstructure of solid electrolyte La2Mo2O9 prepared by spark-plasma sintering. J Eur Ceram Soc 2005;25:3315–21. doi:10.1016/j.jeurceramsoc.2004.08.023
Savvin SN, Shlyakhtina A V., Borunova AB, Shcherbakova LG, Ruiz-Morales JC, Núñez P. Crystal structure and proton conductivity of some Zr-doped rare-earth molybdates. Solid State Ionics 2015;271:91–7. doi:10.1016/j.ssi.2014.12.003
Buzlukov AL, Baklanova Y V, Arapova IY, Savina AA, Morozov VA, Bardet M, et al. Na9In(MoO4)6: synthesis, crystal structure, and Na+ ion diffusion. Ionics (Kiel) 2021;27:4281–93. doi:10.1007/s11581-021-04226-3
Kaimieva OS, Mikhailovskaya ZA, Buyanova ES, Petrova SA, Pankrushina EA. Structure and Electrical Conductivity of Bismuth- and Germanium-Doped Calcium Molybdates. Russ J Inorg Chem 2023;68:386–95. doi:10.1134/S0036023623600235
Sonni M, Zid MF, Hlil EK, Zaidat K, Rossignol C, Obbade S. Na/Li substitution effect on the structural, electrical and magnetic properties of LiCr(MoO4)2 and β─Li0.87Na0.13Cr(MoO4)2. J Alloys Compd 2021;854:154740. doi:10.1016/j.jallcom.2020.154740
Gillie LJ, de Souza SA, Sheptyakov D, Reeves-McLaren N, Pasero D, West AR. Synthesis, structural characterization and Li+ ion conductivity of a new vanado-molybdate phase, LiMg3VMo2O12. J Solid State Chem 2010;183:2589–97. doi:10.1016/j.jssc.2010.08.042
Kotova IY, Savina AA, Vandysheva AI, Belov DA, Stefanovich SY. Synthesis, crystal structure and electrophysical properties of triple molybdates containing silver, gallium and divalent metals. Chim Techno Acta 2018;5:132–43. doi:10.15826/chimtech.2018.5.3.02
Savina AA, Solodovnikov SF, Basovich OM, Solodovnikova ZA, Belov DA, Pokholok K V., et al. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties. J Solid State Chem 2013;205:149–53. doi:10.1016/j.jssc.2013.07.007
Liu H, Zhu Y, Zhu J, Wang W, Zhang Z. Negative thermal expansion performance of (NaMg)xCr2-x(MoO4)3 (0≤x≤1) ceramics. Ceram Int 2024;50:39122–8. doi:10.1016/j.ceramint.2024.07.278
Zhang H, Nawaz A, Huang F, Zhang Z, Hongfei Liu. Synthesis, negative thermal expansion and optical performances of In0.5Sc1.5Mo3O12 thin films via sol-gel spin coating. Ceram Int 2024;50:25541–7. doi:10.1016/j.ceramint.2024.04.288
Liu H, Zhang H, Huang F, Zhu J, Wang W, Zeng X, et al. Preparation of In0.5Sc1.5Mo3O12 nanofibers and its negative thermal expansion property. Ceram Int 2023;49:31627–33. doi:10.1016/j.ceramint.2023.07.116
Nasri R, Larbi T, Amlouk M, Faouzi Zid M. Enhanced photocatalytic removal of azo dye by the K3NaCo4(MoO4)6/H2O2 system. Inorg Chem Commun 2024;165:112556. doi:10.1016/j.inoche.2024.112556
Swathi S, Yuvakkumar R, Senthil Kumar P, Ravi G, Thambidurai M, Dang C, et al. PEG mediated tetragonal calcium molybdate nanostructures for electrochemical energy conversion applications. Int J Hydrogen Energy 2022;47:26013–22. doi:10.1016/j.ijhydene.2022.03.023
Gao W, Sha R, Ai J. Synthesis and Properties of a Red Na5Zn2Gd1−x(MoO4)6:xEu3+ Phosphor. Crystals 2024;14. doi:10.3390/cryst14110933
Klevtsova R.F., Bazarova Zh.G., Klevtsov P.V., Alekseev V.I., Arkhincheeva S.I., Glinskaya L.A. BBG. Crystal structure study of K(Mg0.5Zr0.5)(MoO4)2 ternary molybdate. Zhurnal Strukt Khimii 1995;36:891–4.
Klevtsova RF, Bazarov BG, Glinskaya LA, Bazarova TT, Fedorov KN, Victorvich K, et al. Thallium magnum zirconium molybdate Tl5Mg0.5Zr1.5(MoO4)6: Synthesis, crystal structure, and properties. Russ J Inorg Chem 2003;48:1410–3.
Tushinova YL, Bazarov BG, Kovtunets E V., Bazarova JG. Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system. Kondens Sredy i Mezhfaznye Granitsy = Condens Matter Interphases 2021;23:594–9. doi:10.17308/KCMF.2021.23/3679
Coelho AA. Topas: General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker AXS, 2005.
Dinnebier RE, Leineweber A, Evans JSO. Rietveld refinement practical powder diffraction pattern analysis using TOPAS. 2019. doi:10.1515/9783110461381-201
Bubnova RS, Firsova VA, Filatov SK. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glas Phys Chem 2013;39:347–50. doi:10.1134/S108765961303005X
Chen H, Wong LL, Adams S. SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 2019;75:18–33. doi:10.1107/S2052520618015718
Aksenov SM, Pavlova ET, Popova NN, Tsyrenova GD, Lazoryak BI. Stoichiometry and topological features of triple molybdates AxByCz(MoO4)n with the heteropolyhedral open MT-frameworks: Synthesis, crystal structure of Rb5{Hf1.5Co0.5(MoO4)6}, and comparative crystal chemistry. Solid State Sci 2024;151:107525. doi:10.1016/j.solidstatesciences.2024.107525
Grossman VG, Bazarova JG, Molokeev MS, Bazarov BG. New triple molybdate K5ScHf(MoO4)6: Synthesis, properties, structure and phase equilibria in the M2MoO4–Sc2(MoO4)3–Hf(MoO4)2 (M = Li, K) systems. J Solid State Chem 2020;283:4–9. doi:10.1016/j.jssc.2019.121143
Pet’Kov VI, Shipilov AS, Sukhanov M V. Thermal expansion of MZr2(AsO4)3 and MZr2(TO4)x(PO4)3-x (M = Li, Na, K, Rb, Cs; T = As, V). Inorg Mater 2015;51:1079–85. doi:10.1134/S002016851510012X
Kovtunets E, Tushinova Y, Logvinova A, Bazarova T, Bazarov B. Thermal expansion of ternary molybdate K5[Mn0.5Zr1.5](MoO4)6. ESSUTM Bull 2024;94:90–7. doi:10.53980/24131997_2024_3_90
Kovtunets E, Spiridonova T, Tushinova Y, Logvinova A, Bazarova T, Bazarov B. Thermal expansion and ionic conductivity of K5Pb0.5Zr1.5(MoO4)6. Izv Vuzov Prikl Khimiya i Biotekhnologiya 2024;14:106–11. doi:10.21285/achb.939
Petrushina MY, Korenev S V., Dedova ES, Gubanov AI. MATERIALS AM2О8 (А = Zr, Hf; М = W, Mo) WITH NEGATIVE THERMAL EXPANSION. J Struct Chem 2020;61:1655–80. doi:10.1134/S0022476620110013
Dorzhieva SG, Bazarova JG, Bazarov BG. Exploration of Phase Equilibria in the Triple Molybdate System, Electrical Properties of New Rb5M1/3Zr5/3(MoO4)6 (M-Ag, Na) Phases. J Phase Equilibria Diffus 2021;42:824–30. doi:10.1007/S11669-021-00927-4/FIGURES/7
Spiridonova TS, Solodovnikov SF, Molokeev MS, Solodovnikova ZA, Savina AA, Kadyrova YM, et al. Synthesis, crystal structures, and properties of new acentric glaserite-related compounds Rb7Ag5–3xSc2+x(XO4)9 (X = Mo, W). J Solid State Chem 2022;305:122638. doi:10.1016/j.jssc.2021.122638
Spiridonova TS, Solodovnikov SF, Savina AA, Kadyrova YM, Solodovnikova ZA, Yudin VN, et al. New triple molybdate Rb2AgIn(MoO4)3: synthesis, framework crystal structure and ion-transport behaviour. Acta Crystallogr Sect C Struct Chem 2018;74:1603–9. doi:10.1107/S2053229618014717
DOI: https://doi.org/10.15826/chimtech.2025.12.1.12
Copyright (c) 2024 Alexey Subanakov, Yunna Tushinova, Evgeny Kovtunets, Tatyana Spiridonova, Bair Bazarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice