Cover Image

Voltammetric sensor based on electropolymerized poly(Neutral Red) and pillar[3]arene[2]hydroquinone ammonium derivative for dopamine and ascorbic acid determination

Dominika Kappo, Daniil I. Stoikov, Dmitry I. Stoikov, Kamila R. Karaguzina, Dmitry N. Shurpik, Ivan I. Stoikov, Gennady A. Evtugyn

Abstract


The approaches to the synthesis of newly obtained pillar[3]arene[2]hydroquinone and its derivative with functional ammonium substituents (P[3]A[2]HQae) are suggested. The structures of the macrocycles synthesized were confirmed and characterized by a complex of physical methods. P[3]A[2]HQae has found its application as an electron transfer mediator for the determination of dopamine and ascorbic acid with the voltammetric sensor developed. For a successful sensor assembly the glassy carbon electrode (GCE) was modified with carbon black (CB), P[3]A[2]HQae and electropolymerized form of Neutral red (polyNR). P[3]A[2]HQae demonstrated better mediator properties compared to unsubstituted pillar[5]arene due to the 5–6-fold increase in the redox currents of Neutral red (NR) during its electropolymerization. Under optimal conditions the sensor allowed performing the determination of dopamine and ascorbic acid in the ranges from 10 nM to 1.0 mM and from 1 nM to 1 mM, respectively. The limits of detection were of 10 nM for dopamine and and 1 nM for ascorbic acid. The polyNR peaks positions after its interaction with the analytes provided the opportunity to discriminate the sensor response towards dopamine and ascorbic acid. The possibility of dopamine and ascorbic acid determination in real drug samples was demonstrated.

Keywords


Cyclic voltammetry; Pillar[3]arene[2]quinone; Poly(neutral red); Electrochemical sensor; Macrocycles

Full Text:

PDF

References


Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian jazi F, Lynch I. A review on CNTs-based Electrochemical sensors and Biosensors: unique Properties and potential Applications. Crit Rev Anal Chem. 2024;54(7):2398–2421. doi:10.1080/10408347.2023.2171277

Marx MG. Emerging trends of electrochemical Sensors in food Analysis. Electrochem. 2023;4(1):42–46. doi:10.3390/electrochem4010004

Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. Chemosphere. 2022;294:133779. doi:10.1016/j.chemosphere.2022.133779

Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng: C. 2021;120:111751. doi:10.1016/j.msec.2020.111751

Zamani M, Furst AL. Electricity, chemistry and biomarkers: an elegant and simple package. EMBO Rep. 2022; 23(5): e55096. doi:10.15252/embr.202255096

Stefano JS, Orzari LO, Silva-Neto HA, de Ataíde VN, Mendes LF, Coltro WKT, Longo Cesar Paixão TR, Janegitz BC. Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem. 2022;32:100893. doi:10.1016/j.coelec.2021.100893

Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. para-bridged Symmetrical Pillar[5]arenes: their Lewis acid Catalyzed synthesis and Host–guest Property. J Am Chem Soc. 2008;130(15):5022–5023. doi:10.1021/ja711260m

Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized au NPs for ultrasensitive detection of caffeic acid. Talanta. 2022;243:123322. doi:10.1016/j.talanta.2022.123322

Smolko VA, Shurpik DN, Shamagsumova RV, Porfireva AV, Evtugyn VG, Yakimova LS, Stoikov II, Evtugyn GA. Electrochemical behavior of pillar[5]arene on glassy carbon electrode and its interaction with Cu2+ and Ag+ ions. Electrochim Acta. 2014;147:726–734. doi:10.1016/j.electacta.2014.10.007

Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull. 2020;69(5):859–874. doi:10.1007/s11172-020-2843-2

Stoikov DI, Porfir’eva AV, Shurpik DN, Stoikov II, Evtyugin GA. Electrochemical DNA sensors on the basis of electropolymerized thionine and azure B with addition of pillar[5]arene as an electron transfer mediator. Russ Chem Bull. 2019;68(2):431–437. doi:10.1007/s11172-019-2404-8

Liang H, Zhao Y, Ye H, Li CP. Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J Electroanal Chem. 2019;855:113487. doi:10.1016/j.jelechem.2019.113487

Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chin Chem Lett. 2021;32(1):179–183. doi:10.1016/j.cclet.2020.11.05514

Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized au NPs for ultrasensitive detection of caffeic acid. Talanta. 2022;243:123322. doi:10.1016/j.talanta.2022.123322

Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta. 2015;144:559–568. doi:10.1016/j.talanta.2015.07.008

Qian X, Zhou X, Ran X, Ni H, Li Z, Qu Q, Li J, Du G, Yang L. Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosens Bioelectron. 2019;130:214–224. doi:10.1016/j.bios.2019.01.041

Sun J, Guo F, Shi Q, Wu H, Sun Y, Chen M, Diao G. Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J Electroanal Chem. 2019;847:113221. doi:10.1016/j.jelechem.2019.113221

Wang J, Guo X, Zhou Q, Cai Y, Lu B, Wang Y, Yao Y. Pillar[5]arene functionalized au NPs and BiOX (Cl/Br/I) heterojunction constructed the enhanced photo-electrochemical sensor for ultrasensitive detection of serotonin. Colloids Surf A: Physicochem Eng Asp. 2024;688:133511. doi:10.1016/j.colsurfa.2024.133511

Erdogan ZO, Kursunlu AN, Kucukkolbasi S. Pillar[5]arene based Non-enzymatic and enzymatic Tyramine Sensor. IEEE Sens J. 2021;21(5):5728–5735. doi:10.1109/JSEN.2020.3040344

Ogoshi T, Yamagishi T, Nakamoto Y. Pillar-shaped Macrocyclic hosts Pillar[n]arenes: new Key players for supramolecular Chemistry. Chem Rev. 2016;116(14):7937–8002. doi:10.1021/acs.chemrev.5b00765

Shamagsumova RV, Kulikova TN, Porfireva AV, Shurpik DN, Stoikov II, Rogov AM, Stoikov DI, Evtugyn GA. Electrochemistry and electrochemical assessment of host–guest complexation of substituted pillar[m]arene[n]quinones. J Electroanal Chem. 2023;938:117444. doi:10.1016/j.jelechem.2023.117444

Lao K, Yu C. A computational study of unique properties of pillar[n]quinones: Self‐assembly to tubular structures and potential applications as electron acceptors and anion recognizers. J Comput Chem. 2011;32(12):2716–2726. doi:10.1002/jcc.21853

Ogoshi T, Hasegawa Y, Aoki T, Ishimori Y, Inagi S, Yamagishi T. Reduction of emeraldine Base form of polyaniline by Pillar[5]arene based on formation of Poly(pseudorotaxane) Structure. Macromolecules. 2011;44(19):7639–7644. doi:10.1021/ma2016979

Saba H, An J, Yang Y, Xue M, Liu Y. Voltammetric behavior of 1,4‐Dimethoxypillar[m]arene[n]quinones. Chin J Chem. 2016;34(9):861–865. doi:10.1002/cjoc.201600282

Benito D, Gabrielli C, Garcı́a-Jareño JJ, Keddam M, Perrot H, Vicente F. Study by EQCM on the voltammetric electrogeneration of poly(neutral red). the effect of the pH and the nature of cations and anions on the electrochemistry of the films. Electrochimica Acta. 2003;48(27):4039–4048. doi:10.1016/S0013-4686(03)00561-9

Bilgi Kamaç M, Kıymaz Onat E, Yılmaz M. A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):419–431. doi:10.1080/03067319.2019.1703965

Torres AC, Ghica ME, Brett CMA. Poly(neutral Red)/cholesterol Oxidase modified Carbon film Electrode for cholesterol Biosensing. Electroanalysis. 2012;24(7):1547–1553. doi:10.1002/elan.201200111

Sunil Kumar Naik TS, Kumara Swamy BE. Modification of carbon paste electrode by electrochemical polymerization of neutral red and its catalytic capability towards the simultaneous determination of catechol and hydroquinone: A voltammetric study. J Electroanal Chem. 2017;804:78–86. doi:10.1016/j.jelechem.2017.08.047

Ghica ME, Brett CMA. Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim Acta. 2008;163(3-4):185–193. doi:10.1007/s00604-008-0018-1

Liang X, Zhou Y, Almeida JMS, Brett CMA. A novel electrochemical acetaminophen sensor based on multiwalled carbon nanotube and poly(neutral red) modified electrodes with electropolymerization in ternary deep eutectic solvents. J Electroanal Chem. 2023;936:117366. doi:10.1016/j.jelechem.2023.117366

Gonçalves AR, Ghica ME, Brett CMA. Preparation and characterisation of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene)/poly(neutral red) modified carbon film electrodes, and application as sensors for hydrogen peroxide. Electrochimica Acta. 2011;56(10):3685–3692. doi:10.1016/j.electacta.2010.11.056

Romero MPR, Brito RE, Palma A, Montoya MR, Mellado JMR, Rodríguez-Amaro R. An electrochemical Method for the determination of antioxidant Capacities applied to components of spices and Condiments. J Electrochem Soc. 2017;164(4):B97–B102. doi:10.1149/2.0231704jes 10.3390/s18103489

Temlett JA. Parkinsonʼs disease. Curr Opin Neurol. 1996;9(4):303–307. doi:10.1097/00019052-199608000-00011

Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of Depression. Arch Gen Psychiatry. 2007;64(3):327. doi:10.1001/archpsyc.64.3.327

Franco R, Reyes-Resina I, Navarro G. Dopamine in health and Disease: much More than a Neurotransmitter. Biomedicines. 2021;9(2):109. doi:10.3390/biomedicines9020109

Zeng C, Zhang M, Asico LD, Eisner GM, Jose PA. The dopaminergic system in hypertension. Clin Sci. 2007;112(12):583–597. doi:10.1042/CS20070018

Erdurak-Kiliç CS, Uslu B, Dogan B, Ozgen U, Ozkan SA, Coskun M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some rosa species of Turkey. J Anal Chem. 2006;61(11):1113–1120. doi:10.1134/S106193480611013X

Pisoschi AM, Pop A, Serban AI, Fafaneata C. Electrochemical methods for ascorbic acid determination. Electrochimica Acta. 2014;121:443–460. doi:10.1016/j.electacta.2013.12.127

Gęgotek A, Skrzydlewska E. Ascorbic acid as antioxidant. Vitam Horm. 2023;121:247–270. doi:10.1016/bs.vh.2022.10.008

Mochizuki R, Ogra Y. Determination of intracellular dopamine by liquid chromatography–fluorescence detection with post-column derivatization using the König reaction. J Chromatogr B. 2024;1232:123956. doi:10.1016/j.jchromb.2023.123956

Zhu M, Tang J, Tu X, Chen W. Determination of ascorbic Acid, total Ascorbic Acid, and dehydroascorbic Acid in bee Pollen using Hydrophilic interaction Liquid Chromatography-ultraviolet Detection. Molecules. 2020;25(23):5696. doi:10.3390/molecules25235696

Hulme H, Fridjonsdottir E, Gunnarsdottir H, Vallianatou T, Zhang X, Wadensten H, Shariatgorji R, Nilsson A, Bezard E, Svenningsson P, Andrén PE. Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy. Neurobiol Dis. 2020;137:104738. doi:10.1016/j.nbd.2020.104738

Xing Y, Zhao B, Yin L, Guo M, Shi H, Zhu Z, Zhang L, He J, Ling Y, Gao M, Lu H, Mao E, Zhang L. Vitamin C supplementation is necessary for patients with coronavirus disease: an ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J Pharm Biomed Anal. 2021;196:113927. doi:10.1016/j.jpba.2021.113927

Liu Y, Tian L, Zhao Z, Liu W, Qi L. High-loading ficin@AuNPs on polymer-UiO-66 surface with enhanced peroxidase-mimetic catalytic activity for colourimetric detection of dopamine. Microchim Acta. 2024;191(10):616. doi:10.1007/s00604-024-06689-3

Liu X, Wang X, Qi C, Han Q, Xiao W, Cai S, Wang C, Yang R. Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics. Appl Surf Sci. 2019;479:532–539. doi:10.1016/j.apsusc.2019.02.135

Costa BMC, Prado AA, Oliveira TC, Bressan LP, Munoz RAA, Batista AD, da Silva JAF, Richter EM. Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis. Talanta. 2019;204:353–358. doi:10.1016/j.talanta.2019.06.017

Roychoudhury A, Francis KA, Patel J, Jha SK, Basu S. A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv. 2020;10(43):25487–25495. doi:10.1039/D0RA03526B

Selivanova N, Galyametdinov Y. Terbium(III) as a fluorescent Probe for molecular Detection of ascorbic Acid. Chemosensors. 2021;9(6):134. doi:10.3390/chemosensors9060134

Al-Salahi NOA, Hashem EY, Abdel-Kader DA. Spectrophotometric methods for determination of dopamine Hydrochloride in bulk and in injectable Forms. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2022;278:121278. doi:10.1016/j.saa.2022.121278

Doménech A, García H, Doménech-Carbó MT, Galletero MS. 2,4,6-triphenylpyrylium Ion encapsulated into zeolite Y as a selective Electrode for the electrochemical Determination of dopamine in the presence of ascorbic Acid. Anal Chem. 2002;74(3):562–569. doi:10.1021/ac010657i

Kuzin Y, Kappo D, Porfireva A, Shurpik D, Stoikov I, Evtugyn G, Hianik T. Electrochemical DNA sensor Based on carbon Black—Poly(neutral Red) composite for detection of oxidative DNA Damage. Sensors. 2018;18(10):3489. doi:10.3390/s18103489

Smolko V, Shurpik D, Evtugyn V, Stoikov I, Evtugyn G. Organic acid and DNA sensing with electrochemical Sensor based on carbon Black and Pillar[5]arene. Electroanalysis. 2016;28(6):1391–1400. doi:10.1002/elan.201501080

Stoikov DI, Kappo D, Stoikov DI, Shurpik DN, Stoikov II, Evtugyn GA. Flow-through chronoamperometric sensor based on pillar[3]arene[2]quinone derivative for nitrophenol determination and its application in a model effluent. CTA. 2025;12(1):12101. doi: 10.15826/chimtech.2025.12.1.01

Kappo D, Kuzin YI, Shurpik DN, Stoikov II, Evtyugin GA. Voltammetric DNA sensor Based on Redox-active Dyes for determining Doxorubicin. J Anal Chem. 2022;77(1):94–100. doi:10.1134/S1061934822010075

Kappo D, Shurpik D, Padnya P, Stoikov I, Rogov A, Evtugyn G. Electrochemical DNA sensor Based on carbon Black—Poly(methylene Blue)—Poly(neutral Red) Composite. Biosensors. 2022;12(5):329. doi:10.3390/bios12050329

Altun M, Bilgi Kamaç M, Bilgi A, Yılmaz M. Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):451–467. doi:10.1080/03067319.2020.1720669

Deng P, Feng J, Xiao J, Wei Y, Liu X, Li J, He Q. Application of a simple and sensitive Electrochemical sensor in simultaneous Determination of paracetamol and ascorbic Acid. J Electrochem Soc. 2021;168(9):096501. doi:10.1149/1945-7111/ac1e59

Dinu A, Apetrei C. Determination of ascorbic Acid in pharmaceuticals and food Supplements with the new Potassium Ferrocyanide-doped Polypyrrole-modified Platinum electrode Sensor. Chemosensors. 2022;10(5):180. doi:10.3390/chemosensors10050180

Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. Anal Methods. 2020;12(31):3883–3891. doi:10.1039/D0AY01183E

Santhosh AS, Sandeep S, James Bound D, Nandini S, Nalini S, Suresh GS, Swamy NK, Rajabathar JR, Selvaraj A. A multianalyte electrochemical sensor based on cellulose fibers with silver nanoparticles composite as an innovative nano-framework for the simultaneous determination of ascorbic acid, dopamine and paracetamol. Surf Interfaces. 2021;26:101377. doi:10.1016/j.surfin.2021.101377

Ko SH, Kim SW, Lee YJ. Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration. Sci Rep. 2021;11(1):21101. doi:10.1038/s41598-021-00712-w

Thirumalai D, Lee S, Kwon M, Paik H, Lee J, Chang SC. Disposable voltammetric Sensor modified with block Copolymer-dispersed Graphene for simultaneous Determination of dopamine and ascorbic Acid in ex Vivo mouse Brain Tissue. Biosensors. 2021;11(10):368. doi:10.3390/bios11100368

Abdel-Aziz AM, Hassan HH, Badr IHA. Activated glassy Carbon electrode as an electrochemical Sensing platform for the determination of 4-nitrophenol and dopamine in real Samples. ACS Omega. 2022;7(38):34127–34135. doi:10.1021/acsomega.2c03427

Bai Z, Gao N, Xu H, Wang X, Tan L, Pang H, Ma H. Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Microchim Acta. 2020;187(8):483. doi:10.1007/s00604-020-04446-w

Balkourani G, García-Martín JM, Gorbova E, Lo Vecchio C, Baglio V, Brouzgou A, Tsiakaras P. Electrochemical detection of Dopamine: novel Thin-film Ti-nanocolumnar Arrays/graphene Monolayer-Cufoil Electrodes. Catalysts. 2024;14(8):478. doi:10.3390/catal14080478




DOI: https://doi.org/10.15826/chimtech.2025.12.1.02

Copyright (c) 2024 Dominika Kappo, Daniil I. Stoikov, Dmitry I. Stoikov, Kamila R. Karaguzina, Dmitry N. Shurpik, Ivan I. Stoikov, Gennady A. Evtugyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International