Voltammetric sensor based on electropolymerized poly(Neutral Red) and pillar[3]arene[2]hydroquinone ammonium derivative for dopamine and ascorbic acid determination
Abstract
Keywords
Full Text:
PDFReferences
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian jazi F, Lynch I. A review on CNTs-based Electrochemical sensors and Biosensors: unique Properties and potential Applications. Crit Rev Anal Chem. 2024;54(7):2398–2421. doi:10.1080/10408347.2023.2171277
Marx MG. Emerging trends of electrochemical Sensors in food Analysis. Electrochem. 2023;4(1):42–46. doi:10.3390/electrochem4010004
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. Chemosphere. 2022;294:133779. doi:10.1016/j.chemosphere.2022.133779
Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng: C. 2021;120:111751. doi:10.1016/j.msec.2020.111751
Zamani M, Furst AL. Electricity, chemistry and biomarkers: an elegant and simple package. EMBO Rep. 2022; 23(5): e55096. doi:10.15252/embr.202255096
Stefano JS, Orzari LO, Silva-Neto HA, de Ataíde VN, Mendes LF, Coltro WKT, Longo Cesar Paixão TR, Janegitz BC. Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem. 2022;32:100893. doi:10.1016/j.coelec.2021.100893
Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. para-bridged Symmetrical Pillar[5]arenes: their Lewis acid Catalyzed synthesis and Host–guest Property. J Am Chem Soc. 2008;130(15):5022–5023. doi:10.1021/ja711260m
Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized au NPs for ultrasensitive detection of caffeic acid. Talanta. 2022;243:123322. doi:10.1016/j.talanta.2022.123322
Smolko VA, Shurpik DN, Shamagsumova RV, Porfireva AV, Evtugyn VG, Yakimova LS, Stoikov II, Evtugyn GA. Electrochemical behavior of pillar[5]arene on glassy carbon electrode and its interaction with Cu2+ and Ag+ ions. Electrochim Acta. 2014;147:726–734. doi:10.1016/j.electacta.2014.10.007
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull. 2020;69(5):859–874. doi:10.1007/s11172-020-2843-2
Stoikov DI, Porfir’eva AV, Shurpik DN, Stoikov II, Evtyugin GA. Electrochemical DNA sensors on the basis of electropolymerized thionine and azure B with addition of pillar[5]arene as an electron transfer mediator. Russ Chem Bull. 2019;68(2):431–437. doi:10.1007/s11172-019-2404-8
Liang H, Zhao Y, Ye H, Li CP. Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J Electroanal Chem. 2019;855:113487. doi:10.1016/j.jelechem.2019.113487
Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chin Chem Lett. 2021;32(1):179–183. doi:10.1016/j.cclet.2020.11.05514
Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized au NPs for ultrasensitive detection of caffeic acid. Talanta. 2022;243:123322. doi:10.1016/j.talanta.2022.123322
Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta. 2015;144:559–568. doi:10.1016/j.talanta.2015.07.008
Qian X, Zhou X, Ran X, Ni H, Li Z, Qu Q, Li J, Du G, Yang L. Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosens Bioelectron. 2019;130:214–224. doi:10.1016/j.bios.2019.01.041
Sun J, Guo F, Shi Q, Wu H, Sun Y, Chen M, Diao G. Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J Electroanal Chem. 2019;847:113221. doi:10.1016/j.jelechem.2019.113221
Wang J, Guo X, Zhou Q, Cai Y, Lu B, Wang Y, Yao Y. Pillar[5]arene functionalized au NPs and BiOX (Cl/Br/I) heterojunction constructed the enhanced photo-electrochemical sensor for ultrasensitive detection of serotonin. Colloids Surf A: Physicochem Eng Asp. 2024;688:133511. doi:10.1016/j.colsurfa.2024.133511
Erdogan ZO, Kursunlu AN, Kucukkolbasi S. Pillar[5]arene based Non-enzymatic and enzymatic Tyramine Sensor. IEEE Sens J. 2021;21(5):5728–5735. doi:10.1109/JSEN.2020.3040344
Ogoshi T, Yamagishi T, Nakamoto Y. Pillar-shaped Macrocyclic hosts Pillar[n]arenes: new Key players for supramolecular Chemistry. Chem Rev. 2016;116(14):7937–8002. doi:10.1021/acs.chemrev.5b00765
Shamagsumova RV, Kulikova TN, Porfireva AV, Shurpik DN, Stoikov II, Rogov AM, Stoikov DI, Evtugyn GA. Electrochemistry and electrochemical assessment of host–guest complexation of substituted pillar[m]arene[n]quinones. J Electroanal Chem. 2023;938:117444. doi:10.1016/j.jelechem.2023.117444
Lao K, Yu C. A computational study of unique properties of pillar[n]quinones: Self‐assembly to tubular structures and potential applications as electron acceptors and anion recognizers. J Comput Chem. 2011;32(12):2716–2726. doi:10.1002/jcc.21853
Ogoshi T, Hasegawa Y, Aoki T, Ishimori Y, Inagi S, Yamagishi T. Reduction of emeraldine Base form of polyaniline by Pillar[5]arene based on formation of Poly(pseudorotaxane) Structure. Macromolecules. 2011;44(19):7639–7644. doi:10.1021/ma2016979
Saba H, An J, Yang Y, Xue M, Liu Y. Voltammetric behavior of 1,4‐Dimethoxypillar[m]arene[n]quinones. Chin J Chem. 2016;34(9):861–865. doi:10.1002/cjoc.201600282
Benito D, Gabrielli C, Garcı́a-Jareño JJ, Keddam M, Perrot H, Vicente F. Study by EQCM on the voltammetric electrogeneration of poly(neutral red). the effect of the pH and the nature of cations and anions on the electrochemistry of the films. Electrochimica Acta. 2003;48(27):4039–4048. doi:10.1016/S0013-4686(03)00561-9
Bilgi Kamaç M, Kıymaz Onat E, Yılmaz M. A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):419–431. doi:10.1080/03067319.2019.1703965
Torres AC, Ghica ME, Brett CMA. Poly(neutral Red)/cholesterol Oxidase modified Carbon film Electrode for cholesterol Biosensing. Electroanalysis. 2012;24(7):1547–1553. doi:10.1002/elan.201200111
Sunil Kumar Naik TS, Kumara Swamy BE. Modification of carbon paste electrode by electrochemical polymerization of neutral red and its catalytic capability towards the simultaneous determination of catechol and hydroquinone: A voltammetric study. J Electroanal Chem. 2017;804:78–86. doi:10.1016/j.jelechem.2017.08.047
Ghica ME, Brett CMA. Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim Acta. 2008;163(3-4):185–193. doi:10.1007/s00604-008-0018-1
Liang X, Zhou Y, Almeida JMS, Brett CMA. A novel electrochemical acetaminophen sensor based on multiwalled carbon nanotube and poly(neutral red) modified electrodes with electropolymerization in ternary deep eutectic solvents. J Electroanal Chem. 2023;936:117366. doi:10.1016/j.jelechem.2023.117366
Gonçalves AR, Ghica ME, Brett CMA. Preparation and characterisation of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene)/poly(neutral red) modified carbon film electrodes, and application as sensors for hydrogen peroxide. Electrochimica Acta. 2011;56(10):3685–3692. doi:10.1016/j.electacta.2010.11.056
Romero MPR, Brito RE, Palma A, Montoya MR, Mellado JMR, Rodríguez-Amaro R. An electrochemical Method for the determination of antioxidant Capacities applied to components of spices and Condiments. J Electrochem Soc. 2017;164(4):B97–B102. doi:10.1149/2.0231704jes 10.3390/s18103489
Temlett JA. Parkinsonʼs disease. Curr Opin Neurol. 1996;9(4):303–307. doi:10.1097/00019052-199608000-00011
Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of Depression. Arch Gen Psychiatry. 2007;64(3):327. doi:10.1001/archpsyc.64.3.327
Franco R, Reyes-Resina I, Navarro G. Dopamine in health and Disease: much More than a Neurotransmitter. Biomedicines. 2021;9(2):109. doi:10.3390/biomedicines9020109
Zeng C, Zhang M, Asico LD, Eisner GM, Jose PA. The dopaminergic system in hypertension. Clin Sci. 2007;112(12):583–597. doi:10.1042/CS20070018
Erdurak-Kiliç CS, Uslu B, Dogan B, Ozgen U, Ozkan SA, Coskun M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some rosa species of Turkey. J Anal Chem. 2006;61(11):1113–1120. doi:10.1134/S106193480611013X
Pisoschi AM, Pop A, Serban AI, Fafaneata C. Electrochemical methods for ascorbic acid determination. Electrochimica Acta. 2014;121:443–460. doi:10.1016/j.electacta.2013.12.127
Gęgotek A, Skrzydlewska E. Ascorbic acid as antioxidant. Vitam Horm. 2023;121:247–270. doi:10.1016/bs.vh.2022.10.008
Mochizuki R, Ogra Y. Determination of intracellular dopamine by liquid chromatography–fluorescence detection with post-column derivatization using the König reaction. J Chromatogr B. 2024;1232:123956. doi:10.1016/j.jchromb.2023.123956
Zhu M, Tang J, Tu X, Chen W. Determination of ascorbic Acid, total Ascorbic Acid, and dehydroascorbic Acid in bee Pollen using Hydrophilic interaction Liquid Chromatography-ultraviolet Detection. Molecules. 2020;25(23):5696. doi:10.3390/molecules25235696
Hulme H, Fridjonsdottir E, Gunnarsdottir H, Vallianatou T, Zhang X, Wadensten H, Shariatgorji R, Nilsson A, Bezard E, Svenningsson P, Andrén PE. Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy. Neurobiol Dis. 2020;137:104738. doi:10.1016/j.nbd.2020.104738
Xing Y, Zhao B, Yin L, Guo M, Shi H, Zhu Z, Zhang L, He J, Ling Y, Gao M, Lu H, Mao E, Zhang L. Vitamin C supplementation is necessary for patients with coronavirus disease: an ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J Pharm Biomed Anal. 2021;196:113927. doi:10.1016/j.jpba.2021.113927
Liu Y, Tian L, Zhao Z, Liu W, Qi L. High-loading ficin@AuNPs on polymer-UiO-66 surface with enhanced peroxidase-mimetic catalytic activity for colourimetric detection of dopamine. Microchim Acta. 2024;191(10):616. doi:10.1007/s00604-024-06689-3
Liu X, Wang X, Qi C, Han Q, Xiao W, Cai S, Wang C, Yang R. Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics. Appl Surf Sci. 2019;479:532–539. doi:10.1016/j.apsusc.2019.02.135
Costa BMC, Prado AA, Oliveira TC, Bressan LP, Munoz RAA, Batista AD, da Silva JAF, Richter EM. Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis. Talanta. 2019;204:353–358. doi:10.1016/j.talanta.2019.06.017
Roychoudhury A, Francis KA, Patel J, Jha SK, Basu S. A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv. 2020;10(43):25487–25495. doi:10.1039/D0RA03526B
Selivanova N, Galyametdinov Y. Terbium(III) as a fluorescent Probe for molecular Detection of ascorbic Acid. Chemosensors. 2021;9(6):134. doi:10.3390/chemosensors9060134
Al-Salahi NOA, Hashem EY, Abdel-Kader DA. Spectrophotometric methods for determination of dopamine Hydrochloride in bulk and in injectable Forms. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2022;278:121278. doi:10.1016/j.saa.2022.121278
Doménech A, García H, Doménech-Carbó MT, Galletero MS. 2,4,6-triphenylpyrylium Ion encapsulated into zeolite Y as a selective Electrode for the electrochemical Determination of dopamine in the presence of ascorbic Acid. Anal Chem. 2002;74(3):562–569. doi:10.1021/ac010657i
Kuzin Y, Kappo D, Porfireva A, Shurpik D, Stoikov I, Evtugyn G, Hianik T. Electrochemical DNA sensor Based on carbon Black—Poly(neutral Red) composite for detection of oxidative DNA Damage. Sensors. 2018;18(10):3489. doi:10.3390/s18103489
Smolko V, Shurpik D, Evtugyn V, Stoikov I, Evtugyn G. Organic acid and DNA sensing with electrochemical Sensor based on carbon Black and Pillar[5]arene. Electroanalysis. 2016;28(6):1391–1400. doi:10.1002/elan.201501080
Stoikov DI, Kappo D, Stoikov DI, Shurpik DN, Stoikov II, Evtugyn GA. Flow-through chronoamperometric sensor based on pillar[3]arene[2]quinone derivative for nitrophenol determination and its application in a model effluent. CTA. 2025;12(1):12101. doi: 10.15826/chimtech.2025.12.1.01
Kappo D, Kuzin YI, Shurpik DN, Stoikov II, Evtyugin GA. Voltammetric DNA sensor Based on Redox-active Dyes for determining Doxorubicin. J Anal Chem. 2022;77(1):94–100. doi:10.1134/S1061934822010075
Kappo D, Shurpik D, Padnya P, Stoikov I, Rogov A, Evtugyn G. Electrochemical DNA sensor Based on carbon Black—Poly(methylene Blue)—Poly(neutral Red) Composite. Biosensors. 2022;12(5):329. doi:10.3390/bios12050329
Altun M, Bilgi Kamaç M, Bilgi A, Yılmaz M. Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):451–467. doi:10.1080/03067319.2020.1720669
Deng P, Feng J, Xiao J, Wei Y, Liu X, Li J, He Q. Application of a simple and sensitive Electrochemical sensor in simultaneous Determination of paracetamol and ascorbic Acid. J Electrochem Soc. 2021;168(9):096501. doi:10.1149/1945-7111/ac1e59
Dinu A, Apetrei C. Determination of ascorbic Acid in pharmaceuticals and food Supplements with the new Potassium Ferrocyanide-doped Polypyrrole-modified Platinum electrode Sensor. Chemosensors. 2022;10(5):180. doi:10.3390/chemosensors10050180
Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. Anal Methods. 2020;12(31):3883–3891. doi:10.1039/D0AY01183E
Santhosh AS, Sandeep S, James Bound D, Nandini S, Nalini S, Suresh GS, Swamy NK, Rajabathar JR, Selvaraj A. A multianalyte electrochemical sensor based on cellulose fibers with silver nanoparticles composite as an innovative nano-framework for the simultaneous determination of ascorbic acid, dopamine and paracetamol. Surf Interfaces. 2021;26:101377. doi:10.1016/j.surfin.2021.101377
Ko SH, Kim SW, Lee YJ. Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration. Sci Rep. 2021;11(1):21101. doi:10.1038/s41598-021-00712-w
Thirumalai D, Lee S, Kwon M, Paik H, Lee J, Chang SC. Disposable voltammetric Sensor modified with block Copolymer-dispersed Graphene for simultaneous Determination of dopamine and ascorbic Acid in ex Vivo mouse Brain Tissue. Biosensors. 2021;11(10):368. doi:10.3390/bios11100368
Abdel-Aziz AM, Hassan HH, Badr IHA. Activated glassy Carbon electrode as an electrochemical Sensing platform for the determination of 4-nitrophenol and dopamine in real Samples. ACS Omega. 2022;7(38):34127–34135. doi:10.1021/acsomega.2c03427
Bai Z, Gao N, Xu H, Wang X, Tan L, Pang H, Ma H. Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Microchim Acta. 2020;187(8):483. doi:10.1007/s00604-020-04446-w
Balkourani G, García-Martín JM, Gorbova E, Lo Vecchio C, Baglio V, Brouzgou A, Tsiakaras P. Electrochemical detection of Dopamine: novel Thin-film Ti-nanocolumnar Arrays/graphene Monolayer-Cufoil Electrodes. Catalysts. 2024;14(8):478. doi:10.3390/catal14080478
DOI: https://doi.org/10.15826/chimtech.2025.12.1.02
Copyright (c) 2024 Dominika Kappo, Daniil I. Stoikov, Dmitry I. Stoikov, Kamila R. Karaguzina, Dmitry N. Shurpik, Ivan I. Stoikov, Gennady A. Evtugyn
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International