Cover Image

Manganese- and bismuth-containing phosphors based on MMeBO3 (M = Li, Na, K; Me = Mg, Ca, Sr, Ba, Zn) for white LEDs

Tatiana Khamaganova, Alexsandra Logvinova

Abstract


White light-emitting diodes (LEDs) are a new generation of light sources that are used in solid-state lighting and information display devices. They generate less thermal radiation than incandescent and fluorescent lamps. Phosphor light-emiting diodes (PC-LEDs), which are based on this technology, have high luminous efficiency and energy efficiency; they are compact and havу a long service life. LED materials are subject to such requirements asenvironmental friendliness, transparency of the radiation source used in the excitation process, and color rendering efficiency. For use in LEDs, it is necessary to investigate optical properties of inorganic materials that are doped not only with rare earth elements (due to their high cost) but also with transition metal ions such as Mn2+. This review summarizes and analyses information on the synthesis, structure, and photoluminescent properties of borates MMeBO3, where M = Li, Na, K; Me = Mg, Ca, Sr, Ba, Zn doped with Mn2+ and Bi3+ and co-doped with rare earth metals (Ce3+, Eu3+). Impurity ions of activators, when introduced into a compound's lattice, become the main luminescent centers of phosphors. Processes of energy transfer from the sensitizer to the activator and their mechanisms are discussed. The dependence on the size and morphology of particles of the materials' luminescence efficiency is discussed. The possibility of using borates as matrices for phosphors emitting red light is shown, along with their tunable luminescence for use in white LEDs and autoemission displays.


Keywords


white light-emitting diodes, photoluminescence, activator, sensitizer, energy transfer, quantum efficiency

Full Text:

PDF

References


Blasse G, Grabmaier B.C. A general introduction to luminescent materials, Luminescent Materials. Berlin Heidelberg: Springer-Verlag; 1994. 232 p. doi:10.1007/978-3-642-79017-1_1

Nakamura S, Fasol G. The Blue Laser Diode. Berlin: Springer; 1997. 343 p.doi:10.1007/978-3-662-03462-0

Ma C, Chen H, Luo M, Duan F, Ding Y, Han Y, Zheng T, Yang Y, Xiao Y. A novel borate phosphor Lu5Ba6B9O27:Ce3+ codoped with Sr2+/Tb3+ for NUV-white light emitting diode application. Dalton Trans. 2024;53:14153–14162. doi:10.1039/D4DT01843

Smet PF, Parmentier AB, Poelman D. Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc. 2011;158:37–54. doi:10.1149/1.3568524

Chen L, Chu.C.-I, Liu R-S. Improvement of emission efficiency and color rendering of high-power LED by controlling size of phosphor particles and utilization of different phosphors. Microelectron. Reliab. 2012;52:900–904. doi:10.1016/j.microrel.2011.07.058

George N.C, Brgoch J, Pell A.J, Cozzan C, Jaffe A, Dantelle G, Llobet A, Pintacuda G, Seshadri R, Chmelka B.F. Correlating local compositions and structures with the macroscopic optical properties of Ce3+‐doped CaSc2O4, an efficient green‐emitting phosphor. Chem Mater. 2017;29:3538–3546. doi:10.1021/acs.chemmater.6b05394

Chen X, Yuan X, Xiao W, Song X. Two new rare-earth oxyborates Ba4BiTbO(BO3)4 and Ba1.54Sr2.46BiTbO(BO3)4 and luminescence properties of the Ba4BiTb1−xEuxO(BO3)4 phosphors. RSC Adv. 2024;14:6270–6284. doi:10.1039/d3ra08265b

Hua H, Feng S, Ouyang Z, Shao H, Qin H, Ding H, Du Q, Zhang Z, Jiang J, Jiang H. YAGG:Ce transparent ceramics with high luminous efficiency for solid-state lighting application. J Adv Ceram. 2019;8:389–398. doi:10.1007/s40145-019-0321-9

Li J, Yan J, Wen D, Khan W.U, Shi J, Wu M, Su Q, Tanner P.A. Advanced red phosphors for white light-emitting diodes. J Mater Chem C. 2016;4:8611. doi:10.1039/c6tc02695h

Khan S, Parauha Y. P, Halwar D.K, Dhoble S.J. Rare Earth (RE) doped color tunable phosphors for white light emitting diodes. J Phys Conf Ser Int Conf Res Front Sci. 2021;1913:012017. doi:10.1088/1742-6596/1913/1/012017

Tian J, Xie J, Zhuang W. Recent Advances in Multi-Site Luminescent Materials: Design, Identification and Regulation. Mater. 2023;16:2179. doi:10.3390/ma16062179

Ni J, Zhou ZZ, Xu XK, Liu Q, Shen FR, He LH. Probing into Dopant Concentration Dependent Luminescence Properties of Transition Metal Mn2+ Activated Ca- α-SiAlON Orange-Red Phosphors. Mod App Mater Sci. 2020;2:276–284. doi:10.32474/MAMS.2020.02.000146

Sharma SK, James J, Gupta SK, Hussain S. UV-A,B,C Emitting Persistent Luminescent Materials. Mater. 2022;16:236. doi:10.3390/ma16010236

Götze J. Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem. 2002;374:703–708. doi:10.1007/s00216-002-1461-1

Verma S, Verma K, Kumar D, Chaudhary B, Som S, Sharma V, Kumar V, Swart H. C. Recent advances in rare earth doped alkali-alkaline earth borates for state lighting applications. Phys B. 2018;535:106–113. doi:10.1016/j.physb.2017.06.073

Cantarano A, Ibanez A, Dantelle G. Garnet-type nanophosphors for white LED lighting. Front Mater. 2020;7:210. doi:10.3389/fmats.2020.00210

Ling J, Zhou Y, Xu W, Lin H, Lu S, Wang B, Wang K. Red-emitting YAG:Ce,Mn transparent ceramics for warm WLEDs application. J Adv Ceram. 2020;9:45–54. doi:10.1007/s40145-019-0346-0

Zhang JC, Wang XS, Yao X. Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti. J Alloys Compd. 2010;498:152–156. doi:10.1016/j.jallcom.2010.03.138

Shi R, Ning L, Wang Z, Chen J, Sham T.-K, Huang Y, Qi Z, Li C, Q. Tang Q, Liang H. Zero-Thermal Quenching of Mn2+ Red Luminescence via Efficient Energy Transfer from Eu2+ in BaMgP2O7. Adv Optical Mater. 2019;1901187. doi:10.1002/adom.201901187

Shablinskii AP, Povolotskiy AV, Yuriev AA, Biryukov YP, Bubnova RS, Avdontceva MS, Janson SY, Filatov SK. Novel Red-Emitting BaBi2B4O10:Eu3+ Phosphors: Synthesis, Crystal Structure and Luminescence. Symmetry. 2023;15:918. doi:10.3390/sym15040918

Bedyal A.K, Kumar V, Ntwaeaborwa O.M, Swart H.C. A promising orange-red emitting nanocrystalline NaCaBO3: Sm3+ phosphor for solid state lightning. Mater Res Express. 2014;1:015006–015012. doi:10.1088/2053-1591/1/1/015006

Shao Q, Ding H, Yao L, Xu J, Liang C, Jiang J. Photoluminescence properties of a ScBO3:Cr3+ phosphor and its applications for broadband nearinfrared LEDs. RSC Adv. 2018;8:12035. doi:10.1039/c8ra01084f

Jia Z, Yuan C, Liu Y, Wang X.-J, Sun P, Wang L, Jiang H, Jiang J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci Appl. 2020;9:86. doi:10.1038/s41377-020-0326-8

Adachi S. Photoluminescence Properties of Cr3+-Activated Oxide Phosphors. ECS J Solid State Sci Technol. 2021;10:026001. doi:10.1149/2162-8777/abdc01

Palumbo D.T, Brown J.J. Electronic States of Mn2+-Activated Phosphors. J Electrochem Soc. 1970;117(9):1184–1188. doi:10.1149/1.2407765

Li Y, Qi S, Li P, Wang Z. Research progress of Mn doped phosphors. RSC Adv. 2017;7:38318. doi:10.1039/c7ra06026b

Jiang X, Pan Y, Huang S, X.i’an C, Wang J, Liu G. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications. J Mater Chem C. 2014;2:2301. doi:10.1039/c3tc31878h

Wu L, Wang B, Zhang Y, Li L, Wang H. R, Yi H, Kong YF, Xu JJ. Structure and photoluminescence properties of a rare-earth free red-emitting Mn2+-activated KMgBO3. Dalton Trans. 2014;43:13845. doi:10.1039/c4dt01524j

Kim JS, Kim Js, Kim T.W, Kim SM., Park HL. Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4:Mn2+ phosphor. Appl Phys Lett. 2005;86:91912–91913. doi:10.1063/1.1869550

Liu C, Zhu X, Zhou Z. Effects of composition modulation on the Structural and luminescence properties of Mn2+ doped Na2Mg1-xCaxSiO4 green-emitting phosphors. Optik. 2019;179:875–882. doi:10.1016/j.ijleo.2018.10.076

Shang M, Li G, Yang D, Kang X. (Zn,Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Trans. 2011;40:9379–9387. doi:10.1039/c2dt30670k

Shi Y, Wen Y, Que M, Zhu G, Wang Y. Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor. Dalton Trans. 2014;43:2418–2423. doi:10.1039/C3DT52405A

Dai H, Li S, Li Z, Li J, Xin S, Wang C, Zhu G, Dong B. Novel rare earth free phosphors CsMg2P3O10:Mn2+ with efficient and ultra-broadband red emission for plant growth LEDs. J Am Ceram Soc. 2022;105(7):4719–4730. doi:10.1111/jace.18386

Dai L, Torche A, Strelow C, Kipp T, Vuong TH, Rabeah J, Oldenburg K, Bester G, Mews A, Klinke C, Lesyuk R. Role of magnetic coupling in photoluminescence kinetics of Mn2+-doped ZnS nanoplatelets. ACS Appl Mater Interfaces. 2022;14:18806–18815. doi:10.1021/acsami.1c25191

Tretyakov Yu.D, Lepis H. Ximiya i texnologiya tverdofazny`x materialov [Chemistry and technology of solid-phase materials], MGU: Moscow; 1985. 253 p. (In Russ.).

Lee S, Choi J.I, Kim YJ, Han JK, Ha J, Novitskaya E, Talbot JB, McKittrick J. Comparison of luminescent properties of Y2O3:Eu3+ and LaPO4:Ce3+, Tb3+ phosphors prepared by various synthetic methods. Mater Charact. 2015;103:162–169. doi:10.1016/j.matchar.2015.03.027

Wu L, Bai Y, Wu L, Yi H, Zhang X, Zhang L, Kong Y, Zhang Y, Xu J. Analysis of the structure and abnormal photoluminescence of a red-emitting LiMgBO3:Mn2+ phosphor. Dalton Trans. 2018;47:13094–13105. doi:10.1039/C8DT02450

Wang H, Wu L, Yi H, Wang B, Wu L, Gua Y, Zhang Y. Abnormal luminescent property of Mn2+ in α-LiZnBO3:Mn2+. Dalton Trans. 2015;44:1427–1434. doi:10.1039/c4dt02626h

Liang Z, Mo F, Zhang X, Zhoun L. Luminescence of the LiMgBO3:Eu3+,Bi 3+ phosphor. J Lumin. 2014;151:47–51. doi:10.1016/j.jlumin.2014.02.001

Guo C, Yu J, Ding X, Lai M, Ren Z, Bai J. A dual-emission phosphor LiCaBO3:Ce3+, Mn2+ with energy transfer for near-UV LEDs. J Electrochem Soc. 2011;158:42–46. doi:10.1149/1.3526319

Li J, Li X, Xing H-W, Zhang Y-Z, Yang A-M, Pan Y-H, Liu W-X. Solid state synthesis of LiBaBO3:Ce3+/Mn2+ Phosphors and tunable luminescence induced by energy transfer from Ce3+ to Mn2+. J Mater Sci Mater Electron. 2017;28:4738–4743. doi:10.1007/s10854-016-6117-6

Lephoto M.A, Tshabalala K.G, Motloung S. J, Shaat S.K.K. and Ntwaeaborwa O.M. Tunable emission from LiBaBO3:Eu3+,Bi3+ phosphor for solid‐state lighting. J Lumin. 2017;32:1084–1091. doi:10.1002/bio.3295

Song J, Zhao.W, Zhang H, Hao Y.L, Yang H. H, Zhang H, Zhong J. Energy transfer and ratiometric Temperature sensing based on the dual-emitting NaMgBO3:Ce3+,Mn2+ phosphor. J Lumin. 2021;232:117858. doi:10.1016/j.jlumin.2020.117858

Sun J, Lian Z, Shen G.and Shen D. Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: potential single-phase white-light-emitting phosphors. RSC Adv. 2013;3:1839. doi:10.1039/c3ra42554a

Zhang X.G, Zhou L.Y, Gong M.L. Luminescence properties of dual-emission Ce3+,Mn2+ doped NaSrBO3 phosphors. ECS J Solid State Sci Technol. 2013;2:83–86. doi:10.1149/2.011305jss

Wang Y, Zhang H, Wei Q, Su C, Zhang D. Solid state synthesis, tunable luminescence and thermal stability of NaCaBO3:Eu2+/Mn2+ phosphors. Ceram Int. 2016;42:12422–12426. doi:10.1016/j.ceramint.2016.04.182

Khamaganova TN. Preparation, luminescence, and application of LiMeBO3 borates, Me = Mg, Ca, Sr, Ba, Zn, Cd. Condensed Matter Interphases. 2023;25(3):311–332. doi:10.17308/kcmf.2023.25/11256

Norrestam R. The crystal structure of monoclinic LiMgBO3. Z Kristallogr. 1989;187:103–110. doi:10.1524/zkri.1989.187.1-2.103

Wu L, Chen XL, Li H, He M, Dai L, Li XZ, Xu YP. Structure determination of a new LiCaBO3. J Solid State Chem. 2004;177:1111–1116. doi:0.1016/j.jssc.2003.10.018

Cheng W-D, Zhang H, Lin Q-S, Zheng F-K, Chen J-T. Syntheses, Crystal and Electronic Structures, and Linear Optics of LiMBO3 (M = Sr, Ba) Orthoborates. Chem Mater. 2001;13:1841–1847. doi:10.1021/cm000808i

Chen X, Yang C, Chang X, Zang H, Xiao W. Synthesis and characterization of two alkali – metal zinc borates, α – LiZnBO3 and Li0,48Na0,52ZnBO3. Solid State Sci. 2009;11:2086–2092. doi:10.1016/j.solidstatesciences.2009.08.024

Wu L, Zhang Y, Kong YF, Sun TQ, Xu JJ, Chen XL. Structure Determination of Novel Orthoborate NaMgBO3: A Promising Birefringent Crystal. Inorg Chem. 2007;46:5207–5211. doi:10.1021/ic062429i

Wu L, Chen XL, Li XZ, Dai L, Xu YP, Zhao M. Synthesis and ab initio X-ray powder diffraction structure of the new alkali and alkali earth metal borate NaCa(BO3). Acta Crystallogr C. 2005;61:32–34. doi:10.1107/S010827010401964X

Wu L, Chen XL, Zhang Y, Kong YF, Xu JJ, Xu YP. Ab initio structure determination of novel borate NaSrBO3. J Solid State Chem. 2006;179:1219–1224. doi:10.1016/j.jssc.2006.01.003

Tu J-M, Keszler DA. BaNaBO3. Acta Crystallogr C. 1995;51:1962–1964. doi:10.1107/S010827019400750X

Kononova NG, Kokh AE, Bekker TB, Furmanova NG, Maksimov BA, Molchanov VN, Fedorov PP. Growth and Structure of Barium Sodium Orthoborate NaBaBO3 Crystals. Crystallogr Rep. 2003;48:1044–1046. doi:10.1134/1.1627446

Wu L, Sun JC, Zhang Y, Jin SF, Kong YF, Xu JJ. Structure determination and relative properties of novel chiral orthoborate KMgBO3. Inorg Chem. 2010;49:2715–2720. doi:10.1021/ic901963t

Reddy AA, Das S, Ahmad S, Babu SS, Ferreira JMF, Prakash GV. Influence of the annealing temperatures on the photoluminescence of KCaBO3:Eu3+ phosphor. RSC Adv. 2012;2:8768–8776. doi:10.1039/C2RA20866K

Wang Z, Jing Q, Zhang M, Pan S, Yang Z, Zhang H. (MMgBO3)n (n = 1, M = Li, Na, K, Rb and n = 4, M = Cs): An investigation on the structure transition and optical properties. Inorg Chem Commun. 2014;49:63–67. doi:10.1016/j.inoche.2014.09.022

Pan Z, Chen J, Wu H, Li W. Red emission enhancement in Ce3+/Mn2+ co-doping suited garnet host MgY2Al4SiO12 for tunable warm white LED. Opt Mater. 2017;72:257–264. doi:10.1016/j.optmat.2017.06.012

Chen H, Wang Y. Photoluminescence and cathodoluminescence properties of novel rare-earth free narrow-band bright green-emitting ZnB2O4:Mn2+ phosphor for LEDs and FEDs. Chem Eng J. 2018;361:314–321. doi:10.1016/j.cej.2018.12.039

Jiao M, Jia Y, Lü W, Lv W, Zhao Q, Shao B, You H. Single-phase white-emitting Ca2SrAl2O6:Ce3+,Li+, Mn2+ phosphor with energy transfer for UV-excited WLEDs. Dalton Trans. 2014;43:3202. doi:10.1039/c3dt52832d

Wei R, Wang L, Hu F, Lib X, Peng X, Shi Y, Guo H, Qiu J. Tunable emission and energy transfer in single-phased Ba9Lu2Si6O24:Bi3+,Eu3+ for UV W-LEDs. J Lumin. 2018;197:291–296. doi:10.1016/j.jlumin.2018.01.033

Zhang X, Gong M. Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+, Mn2+ phosphors for LED applications. Dalton Trans. 2014;43:2465–2472. doi:10.1039/c3dt52328d

Lin CC, Liu Y-P, Xiao ZR, Wang Y-K, Cheng B-M, Liu R-S. All-In-One Light-Tunable Borated phosphors with Chemical and Luminescence Dynamical Control Resolution. ACS Appl Mater Interfaces. 2014;6:9160−9172. doi:10.1021/am501232y

Dexter DL. A Theory of Sensitized Luminescence in Solids. J Chem Phys. 1953;21:836–850. 10.1063/1.1699044

Ding J, Wu Q. Recent advances in Bi3+-activated narrow-band emitting phosphors for backlight display applications. Dalton Trans. 2024;3:15403–15411. 10.1039/D4DT01818D

Wu S, Xiong P, Liu X, Fu Y, Liu Q, Chao Y, Dong Q, Li Y, Chen W, Chen Y, Ma Z, Peng M. Sr3Y(BO3)3:Bi3+ phosphor with excellent thermal stability and color tunability for near-ultraviolet white-light LEDs. Mater Chem C. 2021;9:3672–3681. doi:10.1039/d0tc05960a

Sun R, Zhao J, Lu J, Su S, Liu R, Lei Z, Hu C, Teng B, Li J, Sun S, Zhong D. Synthesis and characterizations of a color tunable single-phased warm white phosphor Sr3Lu(BO3)3:Bi3+,Eu3+. J Lumin. 2023;255:119570. doi:10.1016/j.jlumin.2022.119570

Sohn K-S, Cho B, Park HD. Photoluminescence behavior of Ti-doped Zn2SiO4 thin film phosphors. J Am Ceram Soc. 1999;82:2779–2784. doi:10.1111/j.1151-2916.1999.tb02155.x

Rao RP. Tb3+ Activated Green Phosphors for PDP Application. J Electrochem Soc. 2003;150:165–171. doi:10.1149/1.1583718

Jung KY, Lee DY, Kang YC, Park SB. Size-Dependent Luminescent Properties of Hollow and Dense BaMgAl10O17:Eu Blue Phosphor Particles Prepared by Spray Pyrolysis. Kor J Chem Eng. 2004;21:1072–1080. doi:10.1007/BF02705595

Culubrk S, Antic Z, Marinovic-Cincovic M, Ahrenkiel PS, Dramicanin MD. Synthesis and luminescent properties of rare-earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders. Opt Mater. 2014;37:598–606. doi:10.1016/j.optmat.2014.08.001

Wang W, Widiyastuti W, Ogi T, Lenggoro I, Okuyama K. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem Mater. 2007;19:1723–1730. doi:10.1021/cm062887p

Pekgozl I, Erdogmus E, Cubuk S, Basak AS. Synthesis and photoluminescence of LiCaBO3: M(M:Pb2+ and Bi3+) phosphor. J Lumin. 2012;132:1394–1399. doi:10.1016/j.jlumin.2012.01.001

Duan CJ, Delsing ACA, Hintzen HT. Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors. Chem Mater. 2009;21:1010–1016. doi:10.1021/cm801990r

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr А. 1976;32:751–767. doi:10.1107/S0567739476001551

Shang M, Wang J, Fan J, Lian H, Zhang Y, Lin J. ZnGeN2 and ZnGeN2:Mn2+ phosphors: hydrothermal-ammonolysis synthesis, structure and luminescence properties. J Mater Chem C. 2015;3:9306. doi:10.1039/c5tc01864a

Cao R, Shi Z, Quan G, Hu Z, Zheng G, Chen T, Guo S, Ao H. Rare-earth free broadband Ca3Mg3P4O16:Mn2+ red phosphor: Synthesis and luminescence properties. J Lumin. 2018;194:542–546. doi:10.1016/j.jlumin.2017.10.079

Yan J, Zhang Z, Wen D, Zhou J, Xu Y, Li J, Ma C.-G, Shi J, Wu M. Crystal structure and photoluminescence tuning of novel single-phase Ca8ZnLu(PO4)7:Eu2+,Mn2+ phosphors for near-UV converted white light-emitting diodes. J Mater Chem C. 2019;7:8374—8382. doi:10.1039/c9tc02494h

Ma R, Mao S, Wang C, Shao Y, Wang Z, Wang Y, Qu S, Peng D. Luminescence in Manganese (II)-Doped SrZn2S2O Crystals From Multiple Energy Conversion. Front Chem. 2020;8:752. doi:10.3389/fchem.2020.00752

Zhang Y, Mei L, Liu H, Chang J-C, Liu W-R, Huang Z. Thermal-stable and high-efficient orange-red emitting orthosilicate phosphors LiGd9(SiO4)6O2:Mn2+ for n-UV-pumped w-LEDs. Mater Chem Phys. 2019;228:215–220. doi:10.1016/j.matchemphys.2019.02.079

Wang Z, Wang Z, Li Y, Liu J, Bao Q, Meng X, Qiu K, Yang Z, Wang D, Li P. A novel red-emitting phosphor Mg2Y2Al2Si2O12:Ce3+/Mn2+ for blue chip-based white LEDs. RSC Adv. 2021;11:2706–2717. doi:10.1039/d0ra09289d

Hou J, Liu J, Zou J, Zhao G, Liu Y, Feng X. F, Fang Y. High color rendering white light emission from single-phased Ca11(SiO4)4(BO3)2:Ce3+, Tb3+, Mn2+ phosphor for UV-based light emitting diodes. J Mater Sci Mater Electron. 2018;29:18807–18814. doi:10.1007/s10854-018-0006-0

Kang X, S. Lu S, Wang H, Ling D, Lü W. Tricolor- and White Light−Emitting Ce3+/Tb3+/Mn2+-Coactivated Li2Ca4Si4O13 Phosphor via Energy Transfer. ACS Omega. 2018;3:16714−16720. doi:10.1021/acsomega.8b01952

Cao R, Lao Y, Wang X, Ouyang X, Chen T, Wan H, Fan TS, Xie S. Tunable Emission Properties of CaTiSiO5:Ce3+, Mn2+ Phosphor via Efficient Energy Transfer. J Electron Mater. 2020;49:3869–3876. doi:10.1007/s11664-020-08100-2

Zhong J, Zhuo Y, Hariyani S, Zhao W, Zhuang W, Brgoch J. Thermally Robust and Color-Tunable Blue-Green-Emitting BaMgSi4O10:Eu2+,Mn2+ Phosphor for Warm-White LEDs. Inorg Chem. 2020;59:13427–13434. doi:10.1021/acs.inorgchem.0c01803

Li Q, Chen C, Shen B, Yu B, Zhang Y. Enhanced red emission and high thermal stability from Bi3+/Eu3+ co-doped Ba3Y(BO3)3 phosphors for WLEDs application. J Lumin. 2021;237: 118196. doi:10.1016/j.jlumin.2021.118196

Guo H, Zheng Z, Teng L, We Ri, Hu F. Tunable white-light emission and energy transfer in single-phase Bi3+,Eu3+ co-doped Ba9Y2Si6O24 phosphors for UV w-LEDs. J Lumin. 2019;213:494–503. doi:10.1016/j.jlumin.2019.05.057

Zhang J, He Y, Qiu Z, Zhang W, Zhou W, Yua L, and S. Lian S. Site-sensitive energy transfer modes in Ca3Al2O6:Ce3+/Tb3+/Mn2+ phosphors. Dalton Trans. 2014;43:18134–18145. doi:10.1039/c4dt01587h

Li K, Shang M, Zhang Y, Fan J, Lian H, Lin J. Photoluminescence properties of single-component white-emitting Ca9Bi(PO4)7:Ce3+,Tb3+,Mn2+ phosphors for UV LEDs. J Mater Chem С. 2015;3:7096–7104. doi:10.1039/c5tc00927h

Fan X, Si J, Xu M, Li G, Tang J, Cai G. Photoluminescence and energy transfer of efficient and thermally stable white-emitting Ca9La(PO4)7:Ce3+, Tb3+, Mn2+ phosphors. Ceram Int. 2021;47:12056–12065. doi:10.1016/j.ceramint.2021.01.049

Wen D, Kato H, Kobayashi M, Yamamoto S, Mitsuishi M, Kakihana M. Site Occupancy and Luminescence Properties of Ca3Ln(AlO)3(BO3)4:Ce3+, Tb3+, Mn2+ (Ln = Y, Gd) Phosphors for White-LEDs. J Mater Chem С. 2017;5:4578–4583. doi:10.1039/C7TC00941K

Wang Z, Li P, Yang Z, Guo Q, Dong G. A white emitting phosphor BaMg2(PO4)2:Ce3+, Mn2+, Tb3+: Luminescence and energy transfer. Ceram Int. 2014;40:15283–15292. doi:10.1016/j.ceramint.2014.07.026

Huang C-H, Chen T-M. A Novel Single-Composition Trichromatic White-Light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+ Phosphor for UV-Light Emitting Diodes. J Phys Chem С. 2011;115:2349–2355. doi:10.1021/jp107856d

Liu H, Luo Y, Mao Z, Liao L, Xia Z. A novel single-composition trichromatic white emitting Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5 Ce3+/Tb3+/Mn2+ phosphor: synthesis, luminescent properties and applications for white LEDs. J Mater Chem C. 2014;2:1619–1627. doi:10.1039/c3tc32003k

Psuja P, Hreniak D, and Strek W. Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Displays. J Nanomater. 2007;81350. doi:10.1155/2007/81350

Liao J, Zhou D, Yang B, Liu R, Zhang Q, Zhou Q. Sol-gel preparation and photoluminescence properties of CaLa2(MoO4)4:Eu3+ phosphors. J Lumin. 2013;134:533–538. doi:10.1016/j.jlumin.2012.07.033

Chen L, Chu C-I, Liu R-S. Improvement of emission efficiency and color rendering of high-power LED by controlling size of phosphor particles and utilization of different phosphors. Microelectron. Reliab. 2012;52:900–904. doi:10.1016/j.microrel.2011.07.058




DOI: https://doi.org/10.15826/chimtech.2025.12.2.07

Copyright (c) 2024 Tatiana Khamaganova, Alexsandra Logvinova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice