Cover Image

Effect of dissolved oxygen on the efficiency of the electro-Fenton process on Fe2O3/graphite perforated tubular electrode

Abdulgalim Isaev, Zarema Alimirzoeva, Maryam Isaeva, Tatyana Kharlamova

Abstract


Electrodes based on carbon materials modified with iron oxides or metallic iron have attracted much attention in the field of heterogeneous electro-Fenton process for the removal of various organic pollutants. In this study, perforated tubular graphite electrode modified with Fe2O3 (Fe2O3/GT) by electrochemical deposition was used as a cathode material. The obtained electrode was characterized by electron microscopy, energy-dispersive spectroscopy and Raman spectroscopy. The oxidation of rhodamine B in the electro-Fenton process by bubbling air through the perforated tubular graphite cathode at different air pressures was investigated. The complete decolorization of the rhodamine B solution was achieved in 20 min of electrolysis using Fe2O3/GT as a cathode at a current density of 29.85 mA/cm2 and a pressure of 0.1 MPa. The use of higher pressure leads to complications in the equipment design of the electro-Fenton process. Carrying out the electro-Fenton process at a pressure of 0.6 MPa leads to a decrease in the energy consumption by 0.07 kW×h/mg. A possible mechanism for the oxidation of rhodamine B by bubbling air through the perforated tubular graphite cathode modified with Fe2O3 was proposed.

Keywords


Electo-Fenton; rhodamine B; tubular graphite; dissolved oxygen

Full Text:

PDF

References


Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review. Water Air Soil Pollut. 2011;215:3–29. doi:10.1007/s11270-010-0456-3

Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Res. 2018;139:118–131. doi:10.1016/j.watres.2018.03.042

Singh J, Sharma S, Basu AS. Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J Photochem Photobiol A Chem. 2019;376:32–42. doi:10.1016/J.JPHOTOCHEM.2019.03.004.

Brillas E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. A review. Sep Purif Technol. 2022;284:120290. doi:10.1016/J.SEPPUR.2021.120290

Verma M, Haritash AK. Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater. Adv Environ Res. 2020;9:1–17. doi:10.12989/AER.2020.9.1.001

Gonzaga IMD, Almeida CVS, Mascaro LH. A Critical Review of Photo-Based Advanced Oxidation Processes to Pharmaceutical Degradation. Catalysts. 2023;13:221. doi:10.3390/CATAL13020221.

Yu S-Y, Xie Z-H, Yu Wu X, Zheng Y-Z, Shi Y, Xiong Z-K, Zhou P, Liu Y, He C-S, Pan Z-C, Wang K-J, Lai B. Review of Advanced Oxidation Processes for Treating Hospital Sewage to Achieve Decontamination and Disinfection. Chin Chem Lett. 2023;108714. doi:10.1016/J.CCLET.2023.108714

Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB Advancements in Electrochemical Technologies for the Removal of Fluoroquinolone Antibiotics in Wastewater: A Review. SciTotal Environm. 2023;881:163522. doi:10.1016/J.SCITOTENV.2023.163522

Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J Environ Manag. 2016;182:351–366. doi:10.1016/j.jenvman.2016.07.090

Nidheesh PV, Gandhimathi R, Ramesh ST. Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review. Environ Sci Pollut Res. 2013;20 (4):2099–2132. doi:10.1007/S11356-012-1385-Z

Isaev AB, Magomedova AG. Advanced Oxidation Processes Based Emerging Technologies for Dye Wastewater Treatment. Moscow Univ Chem Bull. 2022;77 (4):181–196. doi:10.3103/S0027131422040046

Oturan MA, Aaron JJ. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit Rev Environ Sci Technol. 2014;44(23):2577–2641. doi:10.1080/10643389.2013.829765

Wang Z, Liu M, Xiao F, Postole G, Zhao H, Zhao G. Recent Advances and Trends of Heterogeneous Electro-Fenton Process for Wastewater Treatment-Review. Chin Chem Lett. 2021. doi:10.1016/J.CCLET.2021.07.044

Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere. 2021;275:130104. doi:10.1016/J.CHEMOSPHERE.2021.130104

Wang N, Zheng T, Zhang G, Wang P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J Environ Chem Eng. 2016;4(1):762–787. doi:10.1016/J.JECE.2015.12.016

Poza-Nogueiras V, Rosales E, Pazos M, Sanromán MÁ. Current Advances and Trends in Electro-Fenton Process Using Heterogeneous Catalysts – A Review. Chemosphere. 2018;201:399–416. doi:10.1016/J.CHEMOSPHERE.2018.03.002

Drogui P, Blais J, Mercier G. Review of Electrochemical Technologies for Environmental Applications. Recent Patents Eng. 2007;1:257–272. doi:10.2174/187221207782411629

Gutiérrez MC, Crespi M. A Review of Electrochemical Treatments for Colour Elimination. Coloration Technol. 1999;115(11):342–345. doi:10.1111/J.1478-4408.1999.TB00323.X

Isaev AB, Shabanov NS, Magomedova AG, Nidheesh PV, Oturan MA. Electrochemical Oxidation of Azo Dyes in Water: A Review. Environ Chem Lett. 2023;21(5):2863–2911. doi:10.1007/s10311-023-01610-5

Garcia-Segura S, Ocon JD, Chong MN. Electrochemical Oxidation Remediation of Real Wastewater Effluents — A Review. Process Safety Environ Protect. 2018;113:48–67. doi:10.1016/j.psep.2017.09.014

Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ Sci Pollut Res. 2014;21(14):8336–8367. doi:10.1007/S11356-014-2783-1

Brillas E, Martínez-Huitle CA. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Appl Catal B. 2015;166–167:603–643. doi:10.1016/J.APCATB.2014.11.016

Brillas E, Sirés I, Oturan MA. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem Rev. 2009;109(12):6570–6631. doi:10.1021/CR900136G

Chen X, Wang L, Jin J, Sun W, Yang Z, Chen X, Liu G. Bifunctional boron-nitrogen-containing graphite felt cathode for highly efficient treatment on dye wastewater depending on the metal-free electro-Fenton process. Separat Purificat Technol. 2024;347:127600. doi:10.1016/j.seppur.2024.127600

Cui Y, Yang H, Xiang X, Zhao S, Huang Q, Huang Z. TCE degradation of modified graphite felt cathode in a flow-through electro-Fenton system and its H2O2 production ability in a real contaminated field. Chem Eng J. 2024;489:151445. doi:10.1016/j.cej.2024.151445

Fang X, Feng Y, Li X, Ding D, Wang X, Zhang D. Efficient Fenton-like catalysis enabled by single cobalt atoms anchored on expanded graphite: Remarkable intrinsic activity of Co-N4 sites and the enhanced mass transfer facilitated by gradient mesopore structure. Chem Eng J. 2024;479:147840. doi:10.1016/j.cej.2023.147840

Kuleyin A, Gök A, Akbal F. Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. J Environ Chem Eng. 2021;9(1):104782. doi:10.1016/j.jece.2020.104782

Guo H, Zhao C, Xu H, Zhang Y, Jiao Y, Hao H, Li N, Xu W. New insights into the slow-drying modified hydrophilic graphite felt gas-diffusion cathode using acetylene black/PTFE for efficient electro-Fenton removal of norfloxacin. J Indust Eng Chem. 2023;121:409–420. doi:10.1016/j.jiec.2023.01.043

Guo H, Zhao C, Xu H, Hao H, Yang Z, Li N, Xu W. Enhanced H2O2 formation and norfloxacin removal by electro-Fenton process using a surface-reconstructed graphite felt cathode: New insight into synergistic mechanism of defective active sites. Environ Res. 2023;220:115221. doi:10.1016/j.envres.2023.115221

Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. J Environ Manag. 2024;365:121633. doi:10.1016/j.jenvman.2024.121633

Sun YM, Li C, Liu YH. CO2-activated graphite felt as an effective substrate to promote hydrogen peroxide synthesis and enhance the electro-Fenton activity of graphite/Fe3O4 composites in situ fabricated from acid mine drainage. J Water Process Eng. 2024;57:104690. doi:10.1016/j.jwpe.2023.104690

Yan Z, Qi H, Shi X, Liu Z, Sun Z. Phosphorus doping to boost the electro-Fenton degradation of sulfamethoxazole using mixed-valence copper (I and II) phosphate/etched graphite felt cathode. Separation Purification Technol. 2024;339:126716. doi:10.1016/j.seppur.2024.126716

Rabiei M, Farhadian M, Solaimany Nazar AR, Tangestaninejad S. Integrated Electro-photo-Fenton process and visible light-driven TiO2/rGO/Fe2O3 photocatalyst based on graphite cathode in the presence of iron anode for Metronidazole degradation. J Appl Electrochem. 2023;53(1):65–83. doi:10.1007/s10800-022-01760-4

Qi H, Shi X, Liu Z, Yan Z, Sun Z. In situ etched graphite felt modified with CuFe2O4/Cu2O/Cu catalyst derived from CuFe PBA for the efficient removal of sulfamethoxazole through a heterogeneous electro-Fenton process. Appl Catalysis B Environ. 2023;331:122722. doi:10.1016/j.apcatb.2023.122722

Cui L, Sun M, Zhang Z. Flow-through integration of FeOCl/graphite felt-based heterogeneous electro-Fenton and Ti4O7-based anodic oxidation for efficient contaminant degradation. Chem Eng J. 2022;450:138263. doi:10.1016/j.cej.2022.138263

Chen S, Cheng C. Facile preparation of iron-anchored graphite cloth through salt immersion and sintering approaches and its application to the electro-Fenton catalytic system as a cathode. Chem Papers. 2022;76(10);6427–6435. doi:10.1007/s11696-022-02258-1

Liu P, Zhong D, Xu Y, Zhong N, He G. Co/Fe co-doped porous graphite carbon derived from metal organic framework for microelectrolysis-Fenton catalytic degradation of Rhodamine B. J Environ Chem Eng. 2021;9(5):105924. doi:10.1016/j.jece.2021.105924

Li B, Sun JD, Tang C, Yan ZY, Zhou J, Wu XY, Yong XY. A novel core-shell Fe@Co nanoparticles uniformly modified graphite felt cathode (Fe@Co/GF) for efficient bio-electro-Fenton degradation of phenolic compounds. Sci Total Environ. 2021;760:143415. doi:10.1016/j.scitotenv.2020.143415

Magomedova A, Isaev A, Orudzhev F. Oxygen Vacancies Enhanced Photo-Fenton-like Catalytic Degradation of Rhodamine B by Electrochemical Synthesized α-Fe2O3 Nanoparticles. Inorg Chem Commun. 2024;165:112563. doi:10.1016/J.INOCHE.2024.112563

Magomedova A, Isaev A, Orudzhev F, Sobola D, Murtazali R, Rabadanova A, Shabanov NS, Zhu M, Emirov R, Gadzhimagomedov S, Alikhanov N, Kasinathan K. Magnetically Separable Mixed-Phase α/γ-Fe2O3 Catalyst for Photo-Fenton-like Oxidation of Rhodamine B Catalysts. 2023;13 (5):872. doi:10.3390/CATAL13050872

El Aggadi S, Kaichouh G, El Abbassi Z, Fekhaoui M, Hourch A. EL. Electrode Material in Electrochemical Decolorization of Dyestuffs Wastewater: A Review. E3S Web Conf. 2021;234:00058. doi:10.1051/e3sconf/202123400058

Krishnan S, Martínez-Huitle CA, Nidheesh PV. An Overview of Chelate Modified Electro-Fenton Processes. J Environ Chem. Eng. 2022;10(2):107183. doi:10.1016/j.jece.2022.107183

Li D, Yang T, Liu Z, Xia Y, Chen Z, Yang S, Chao Gai, Amit Bhatnagar, Yun Hau Ng, Ok YS. Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy. Sci Total Environ. 2022;824:153772. doi:10.1016/j.scitotenv.2022.153772

Divyapriya G, Nidheesh PV. Importance of Graphene in the Electro-Fenton Process. ACS Omega. 2020;5(10):4725–4732. doi:10.1021/acsomega.9b04201

Oturan N, Oturan MA. Electro-Fenton Process: Background, New Developments, and Applications. Electrochem Water Wastewater Treatment. 2018;193–221. doi:10.1016/B978-0-12-813160-2.00008-0

Matyszczak G, Krzyczkowska K, Fidler A. A Novel, Two-Electron Catalysts for the Electro-Fenton Process. J Water Process Eng. 2020;36:101242. doi:10.1016/J.JWPE.2020.101242

Li L, Hu H, Teng X, Yu Y, Zhu Y, Su X. Electrogeneration of H2O2 using a Porous Hydrophobic Acetylene Black Cathode for Electro-Fenton Process. Chem Eng Process Process Intensificat. 2018;133(2):34–39. doi:10.1016/j.cep.2018.09.013

Hu Xu, Hongkai Guo, Changsheng Chai, Na Li, Xueyong Lin, Weijun Xu. Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and Electro-Fenton degradation of rhodamine B. 2022;131936. doi:10.1016/j.chemosphere.2021.131936

Nidheesh PV, Ganiyu SO, Martínez-Huitle CA, Mousset E, Olvera-Vargas H, Trellu C, Zhou M, Oturan MA. Recent Advances in Electro-Fenton Process and Its Emerging Applications. Crit Rev Environ Sci Technol. 2022;1–27. doi:10.1080/10643389.2022.2093074

Nidheesh PV, Gandhimathi R. Removal of Rhodamine B from Aqueous Solution Using Graphite–Graphite Electro-Fenton System. Desalinat Water Treatment. 2014;52(10–12):1872–1877. doi:10.1080/19443994.2013.790321

Ren W, Peng Q, Huang Z, Zhang Z, Zhan W, Lv K, Sun J. Effect of Pore Structure on the Electro-Fenton Activity of ACF@OMC Cathode. Ind Eng Chem Res. 2015;54(34):8492–8499. doi:10.1021/acs.iecr.5b02139

Pérez JF, Sabatino S, Galia A, Rodrigo MA, Llanos J, Sáez C, Scialdone O. Effect of Air Pressure on the Electro-Fenton Process at Carbon Felt Electrodes. Electrochim Acta. 2018;273:447–453. doi:10.1016/J.ELECTACTA.2018.04.031

Panizza M, Oturan MA. Degradation of Alizarin Red by Electro-Fenton Process Using a Graphite-Felt Cathode. Electrochim Acta. 2011;56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105

Wu X, Yang X, Wu D, Fu R. Feasibility Study of Using Carbon Aerogel as Particle Electrodes for Decoloration of RBRX Dye Solution in a Three-Dimensional Electrode Reactor. Chem Eng J. 2008;138(1–3):47–54. doi:10.1016/J.CEJ.2007.05.027

Nidheesh PV;Gandhimathi R. Trends in Electro-Fenton Process for Water and Wastewater Treatment: An Overview. Desalinat. 2012;299:1–15. doi:10.1016/j.desal.2012.05.011

Nidheesh PV, Trellu C, Vargas HO, Mousset E, Ganiyu SO, Oturan MA. Electro-Fenton Process in Combination with Other Advanced Oxidation Processes: Challenges and Opportunities. Curr Opin Electrochem. 2023;37:101171. doi:10.1016/J.COELEC.2022.101171

Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK. A Review on Synthesis, Characterization, and Applications of Nano Zero Valent Iron (NZVI) for Environmental Remediation. Crit Rev Environ Sci Technol. 2016;443–466. doi:10.1080/10643389.2015.1103832

Nidheesh PV, Gandhimathi R. Comparative Removal of Rhodamine B from Aqueous Solution by Electro-Fenton and Electro-Fenton-Like Processes. Clean. 2014;42(6):779–784. doi:10.1002/CLEN.201300093

Gopinath A, Pisharody L, Popat A, Nidheesh PV. Supported Catalysts for Heterogeneous Electro-Fenton Processes: Recent Trends and Future Directions. Curr Opin Solid State Mater Sci. 2022;26(2):100981. doi:10.1016/J.COSSMS.2022.100981

Huang LZ, Zhu M, Liu Z, Wang Z, Hansen HCB. Single Sheet Iron Oxide: An Efficient Heterogeneous Electro-Fenton Catalyst at Neutral pH. J Hazard Mater. 2019;364:39–47. doi:10.1016/j.jhazmat.2018.10.026

Lin L, Zhang F, Hou X, Wang L, Wu W, Wang L, Li Y, Xie H. Fe@Fe2O3/Etched Carbon Felt as a Cathode for Efficient Bisphenol a Removal in a Flow-through Electro-Fenton System: Electron Transfer Pathway and Underlying Mechanism. Sep Purif Technol. 2024;334:125982. doi:10.1016/J.SEPPUR.2023.125982

Qi H, Sun X, Sun Z. Cu-Doped Fe2O3 Nanoparticles/Etched Graphite Felt as Bifunctional Cathode for Efficient Degradation of Sulfamethoxazole in the Heterogeneous Electro-Fenton Process. Chem Eng J. 2022;427:131695. doi:10.1016/J.CEJ.2021.131695

García-Rodríguez O, Bañuelos JA, El-Ghenymy A, Godínez LA, Brillas E, Rodríguez-Valadez FJ. Use of a Carbon Felt-Iron Oxide Air-Diffusion Cathode for the Mineralization of Malachite Green Dye by Heterogeneous Electro-Fenton and UVA Photoelectro-Fenton Processes. J Electroanal Chem. 2016;767:40–48. doi:10.1016/j.jelechem.2016.01.035

El-Ghenymy A, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I, Brillas E. Comparative Use of Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton with Pt or Boron-Doped Diamond Anode to Decolorize and Mineralize Malachite Green Oxalate Dye. Electrochim Acta. 2015;182:247–256. doi:10.1016/j.electacta.2015.09.078

García-Rodríguez O, Bañuelos JA, El-Ghenymy A, Godínez LA, Brillas E, Rodríguez-Valadez FJ. Use of a Carbon Felt–Iron Oxide Air-Diffusion Cathode for the Mineralization of Malachite Green Dye by Heterogeneous Electro-Fenton and UVA Photoelectro-Fenton Processes. J Electroanal Chem. 2016;767:40–48. doi:10.1016/J.JELECHEM.2016.01.035

El-Ghenymy A, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I, Brillas E. Comparative Use of Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton with Pt or Boron-Doped Diamond Anode to Decolorize and Mineralize Malachite Green Oxalate Dye. Electrochim Acta. 2015;182:247–256. doi:10.1016/J.ELECTACTA.2015.09.078

Ai Z, Lu L, Li J, Zhang L, Qiu J, Wu M. Fe@Fe2O3 Core-Shell Nanowires as Iron Reagent. 1. Efficient Degradation of Rhodamine by a Novel Sono-Fenton Process. J Phys Chem C. 2007;111(11):4087–4093. doi:10.1021/jp065559l

Ai Z, Lu L, Li J, Zhang L, Qiu J, Wu M. Fe@Fe2O3 Core-Shell Nanowires as the Iron Reagent. 2. An Efficient and Reusable Sono-Fenton System Working at Neutral PH. J Phys Chem C. 2007;111(20):7430–7436. doi:10.1021/jp070412v

Wang CT, Chou WL, Chung MH, Kuo YM. COD Removal from Real Dyeing Wastewater by Electro-Fenton Technology Using an Activated Carbon Fiber Cathode. Desalination. 2010;253(1–3):129–134. doi:10.1016/j.desal.2009.11.020

Zhang C, Ren G, Wang W, Yu X, Yu F, Zhang Q, Zhou M. A New Type of Continuous-Flow Heterogeneous Electro-Fenton Reactor for Tartrazine Degradation. Sep Purif Technol. 2019;208:76–82. doi:10.1016/J.SEPPUR.2018.05.016

Ren G, Zhou M, Su P, Yang W, Lu X, Zhang Y. Simultaneous Sulfadiazines Degradation and Disinfection from Municipal Secondary Effluent by a Flow-through Electro-Fenton Process with Graphene-Modified Cathode. J. Hazard Mater. 2019;368:830–839. doi:10.1016/J.JHAZMAT.2019.01.109

Liu HY, Jiang J, Tang L, Liang Y, Xue SG. Recent Progress in Electrocatalytic Selectivity in Heterogeneous Electro-Fenton Processes. J Mater Chem A Mater. 2023;11(14):7387–7408. doi:10.1039/D2TA09676E

Esteves BM, Rodrigues CSD, Madeira LM. Wastewater Treatment by Heterogeneous Fenton-like Processes in Continuous Reactors. Handbook Environ Chem. 2019;67:211–255. doi:10.1007/698_2017_81

Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants:A Critical Review. Chem Rev. 2015;115(24):13362–13407. doi:10.1021/ACS.CHEMREV.5B00361

Isaev AB, Aliev ZM. Effect of oxygen pressure on the electrochemical oxidation of Chrome Brown azo dye. Russ J Appl Chem. 2012;85:776-781. doi:10.1134/S1070427212050163

Dinesh A, Anantha MS, Santosh MS, Priya MG, Venkatesh K, Yogesh Kumar KS, Raghu MS, Muralidhara HB. Improved Performance of Iron-Based Redox Flow Batteries Using WO3 Nanoparticles Decorated Graphite Felt Electrode. Ceram Int. 2021;47 (7):10250–10260. doi:10.1016/J.CERAMINT.2020.09.225

Nayak PK. Comment on “Phase Analysis of Iron Oxides Forming the Red Pigment Layer of the Ancient Earthenwares Excavated from the Southern Korean Peninsula.” J Radioanal Nucl Chem. 2022;331(3):1519–1520. doi:10.1007/S10967-021-08181-1

Premila M, Rajaraman R, Abhaya S, Govindaraj R, Amarendra G. Atmospheric Corrosion of Boron Doped Iron Phosphate Glass Studied by Raman Spectroscopy. J Non Cryst Solids. 2020;530:119748. doi:10.1016/J.JNONCRYSOL.2019.119748

Qiu S He D, Ma J, Liu T, Waite TD. Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. Electrochim Acta. 2015;176:51–58. doi:10.1016/j.electacta.2015.06.103

Nidheesh PV, Gandhimathi R, Sanjini NS. NaHCO3 Enhanced Rhodamine B Removal from Aqueous Solution by Graphite-Graphite Electro Fenton System. Sep Purif Technol. 2014;132:568–576. doi:10.1016/j.seppur.2014.06.009

Scialdone O, Galia A, Gattuso C, Sabatino S, Schiavo B. Effect of Air Pressure on the Electro-Generation of H2O2 and the Abatement of Organic Pollutants in Water by Electro-Fenton Process. Electrochim Acta. 2015;182:775–780. doi:10.1016/J.ELECTACTA.2015.09.109

Qi H, Ren W, Shi X, Sun Z. Hydrothermally modified graphite felt as the electro-Fenton cathode for effective degradation of diuron: The acceleration of Fe2+ regeneration and H2O2 production. Separat Purificat Technol. 2022;299:121724. doi:10.1016/j.seppur.2022.121724

Gomathi E, Maharaja P, Rathore HS, Boopathy R, Panda RC, Senthilvelan T, Arthanareeswari M. Treatment of textile dye consortium through photo-electro-fenton process using graphite-Ti electrode system and toxicity studies. Carbon Lett. 2023;33(7):2011-2025. doi:10.1007/s42823-023-00551-x




DOI: https://doi.org/10.15826/chimtech.2025.12.1.04

Copyright (c) 2024 Abdulgalim Isaev, Zarema Alimirzoeva, Maryam Isaeva, Tatyana Kharlamova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International