Cover Image

Tetraarylantimony 2,2′-bipyridinecarboxylates: synthesis, photophysical and molecular docking studies

Ekaterina V. Artem’eva, Vladimir V. Sharutin, Alexey P. Krinochkin, Yulia M. Sayfutdinova, Il’ya I. Butorin, Vasiliy S. Gaviko, Yaroslav K. Shtaitz, Maria I. Valieva, Igor S. Kovalev, Olga V. Shabunina, Igor L. Nikonov, Dmitry S. Kopchuk, Grigory V. Zyryanov

Abstract


Tetraarylantimony(V) carboxylates based on 5-carboxyl and 6-carboxyl 2,2’-bipyridines (4 compounds) were synthesized for the first time. The structure of one of the compounds was confirmed by X-ray diffraction analysis. It was shown that the carboxyl group participates in the coordination of the antimony(V) cation, but the bipyridine fragment does not. The antitumor activity of the new complexes was assessed by molecular docking, and the most probable targets were determined. It was shown that the affinity of ligands to them is higher than that of the corresponding complexes. The best results were obtained for complex 3a; its inhibition of VEGFR2 is 74% more effective compared to the native ligand. In addition, the primary photophysical properties of the new carboxylates in acetonitrile solutions were studied. It was shown that the luminescence quantum yield values strongly depend on the position of the carboxyl group: for 5-substituted compounds they reach 65.0%, while for 6-substituted ones they have an extremely low (< 0.1%) value. At the same time, the absorption and emission maxima are within 300–314 nm and 364–403 nm, respectively.

Keywords


2,2′-bipyridine carboxylic acids; antimony(V) complexes; XRD analysis; molecular docking; luminescence

Full Text:

PDF

References


Artem’eva EV, Duffin RN, Munuganti S, Efremov AN, Andrews PC, Sharutina OK, Sharutin VV. Modulating aryl substitution: Does it play a role in the anti-leishmanial activity of a series of tetra-aryl Sb(V) fluorinated carboxylates? J Inorg Biochem. 2022;234:111864. doi:10.1126/science.1228032

Duffin RN, Blair VL, Kedzierski L, Andrews PC. Comparative stability, cytotoxicity and anti-leishmanial activity of analogous organometallic Sb(V) and Bi (V) acetato complexes: Sb confirms potential while Bi fails the test. J Inorg Biochem. 2018;189:151–162. doi:10.1016/j.jinorgbio.2018.08.015

Duffin RN, Blair VL, Kedzierski L, Andrews PC. Comparative stability, toxicity and anti-leishmanial activity of triphenyl antimony(V) and bismuth(V) α-hydroxy carboxylato complexes. Dalton Trans. 2018;47(3):971–980. doi:10.1039/c7dt04171c

Sharutin VV, Poddel’sky AI, Sharutina OK. Aryl compounds of pentavalent antimony: syntheses, reactions, and structures. Russ J Coord Chem. 2020;46:663–728. doi:10.1134/S1070328420100012

Gubanova YuO, Sharutin VV, Sharutina OK, Petrova KYu. Specific features of the reactions of pentaphenylantimony with polyfunctional heterocyclic carboxylic acids. Russ J Gen Chem. 2020;90(9):1664–1669. doi:10.1134/s1070363220090121

Domagala M, Huber F, Preut H. Triorganoantimony and triorganobismuth derivatives of 2-pyridinecarboxylic acid and 2-pyridylacetic acid. Crystal and molecular structures of (C6H5)3Sb(O2C-2-C5H4N)2 und (CH3)3Sb(O2CCH2-2-C5H4N)2. Z Anorg Allg Chem. 1990;582:37–50. doi:10.1002/zaac.19905820107

Chaudhari KR, Jain VK, Sagoria VS, Tiekink ERT. Triorganoantimony(V) carboxylates: Synthesis, characterization and crystal structure of [Me3Sb(O2C–C5H4N)2]•H2O. J Organomet Chem. 2007;692(22):4928–4932. doi:10.1016/j.jorganchem.2007.07.033

Mushtaq R, Rauf MK, Bolte M, Nadhman A, Badshah A, Tahir MN, Yasinzai M, Khan KM. Synthesis, characterization and antileishmanial studies of some bioactive heteroleptic pentavalent antimonials. 2017;31(5):e3606. doi:10.1002/aoc.3606

Zhong GQ, Gu M, Zhang Y. Solid-Liquid Reaction Synthesis and Characterization of Bioinorganic Complexes of Nicotinic Acid with Antimony(III) and Bismuth(III) Ion. Adv Mater Res. 2011; 282-283:267–270. doi:10.4028/www.scientific.net/AMR.282-283.267

Sharutin VV, Pakusina AP, Platonova TP, Sharutina OK, Gerasimenko AV, Popov DYu, Pushilin MA. Synthesis and Structure of Tetraphenylantimony Nicotinate. 2004;74(2):207–210. doi:10.1023/B:RUGC.0000025501.29625.ff

Sharutin VV, Sharutina OK, Pakusina AP, Platonova TP, Zhidkov VV, Pushilin MA, Gerasimenko AV. Triarylantimony Dicaroxylates Ar3Sb[OC(O)R]2 (Ar = Ph, p-Tol; R = 2-C4H3O, 3-C5H4N): Synthesis and Structure. Russ J Coord Chem. 2003;29(10):694–702. doi:10.1023/A:1026020032214

Quan L, Yin H-D, Cui J-C, Hong M, Wang D-Q. Synthesis, characterization and crystal structures of tri- and tetraphenylantimony(V) compounds containing arylcarbonyloxy moiety. J Organomet Chem. 2009;694(23):3708–3717. doi:10.1016/j.jorganchem.2009.07.040

Singhal K, Mishra R., Raj P. Synthesis, characterization, and in vitro antimicrobial and antitumor activities of some tetraphenylstibonium(V) carboxylates. Heteroat Chem. 2008;19(7):688–693. doi:10.1002/hc.20498

De Queiroz AC, Lima Barbosa AS, De Albuquerque Melo GM, Siqueira Guedes JD, Alexandre Moreira MS, Meneghetti MR, Melo De Omena RJ, invertors; Universidade Federal de Alogoas, assignee. Antimony(V) organometallic quinolinecarboxylates as antileishmaniasis agents. Brazil patent BR 102015014710 A2, 2016 Dec 27.

Abdolmaleki S, Yarmohammadi N, Adibi H, Ghadermazi M, Ashengroph M, Rudbari HA, Bruno G. Synthesis, X-ray studies, electrochemical properties, evaluation as in vitro cytotoxic and antibacterial agents of two antimony(III) complexes with dipicolinic acid. Polyhedron. 2019;159:239–250. doi:10.1016/j.poly.2018.11.063

Min OK, Xin QH, Il JH, invertors; Univ. Chung ang Ind. Acad. Coop. Found, assignee. Yellowish green light-emitting antimony coordination compound. Korean patent KR 2020065392 A, 2020 Sep 06.

Aghabozorg H, Manteghi F, Ghadermazi M, Mirzaei M, Salimi AR, Eshtiagh-Hosseini H. Synthesis, X-ray characterization and molecular structure of a novel supramolecular compound of antimony(III); theoretical investigation on molecular and electronic properties based on the ab initio HF and various DFT methods. J Iran Chem Soc. 2010;7(2):500–509. doi:10.1007/BF03246038

Aghabozorg H, Ramezanipour F, Nakhjavan B, Soleimannejad J, Attar Gharamaleki J, Sharif MA. Different complexation behavior of a proton transfer compound obtained from 1,10-phenanthroline and pyridine-2,6-dicarboxylic acid with Sn(IV), Sb(III) and Tl(I).Cryst Res Technol. 2007;42(11):1137–1144. doi:10.1002/crat.200710936

Kozhevnikov VN, Shabunina OV, Kopchuk DS, Ustinova MM, König B, Kozhevnikov DN. Facile synthesis of 6-aryl-3-pyridyl-1,2,4-triazines as a key step toward highly fluorescent 5-substituted bipyridines and their Zn(II) and Ru(II) complexes. Tetrahedron. 2008;64(37):8963–8973. doi:10.1016/j.tet.2008.06.040

Kopchuk DS, Krinochkin AP, Kozhevnikov DN, Slepukhin PA. Novel neutral lanthanide complexes of 5-aryl-2,2'-bipyridine-6'-carboxylic acids with improved photophysical properties. Polyhedron.2016;118:30–36. doi:10.1016/j.poly.2016.07.025

Kaes C., Katz A., Hosseini M.W. Bipyridine: The most widely used ligand. a review of molecules comprising at least two 2,2‘-bipyridine units. Chem Rev. 2000;100(10):3553–3590. doi:10.1021/cr990376z

Kamatchi T.S., Chitrapriya N., Kumar S.L. A., Jung J.Y., Puschmann H., Fronczek, F.R., Natarajan K. The effect of incorporating carboxylic acid functionalities into 2,2′-bipyridine on the biological activity of the complexes formed: synthesis, structure, DNA/protein interaction, antioxidant activity and cytotoxicity. RSC Adv. 2017;7(27):16428–16443. doi:10.1039/c7ra00425g

CrysAlisPro, version 1.171.39.38a, Data Collection, Reduction and Correction Program, Rigaku Oxford Diffraction, 2017.

Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A. 2015;71(1):3–8. doi:10.1107/S2053273314026370

Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr С. 2015;71(1):3–8. doi:10.1107/S2053229614024218

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42(2):339–341. doi:10.1107/S0021889808042726

Doak GO, Long, GG, Freedman LD. The infrared spectra of some phenyl-substituted pentavalent antimony compounds. J Organomet Chem. 1965;4:82–91. doi:10.1016/S0022-328X(00)82370-0

Sharutin VV, Sharutina OK, Efremov AN, Artem’eva EV. Fluorine-containing tetraarylantimony carboxylates: synthesis and structure. Russ J Inorg Chem. 2020;65:482–486. doi:10.1134/S0036023620040178

Batsanov SS. Van der Waals radii of elements. Inorg Mater. 2001;37:871–885. doi:10.1023/A:1011625728803

Porrès L, Holland A, Pålsson LO, Monkman AP, Kemp C, Beeby A. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc. 2006;16:267–73. doi:10.1007/S10895-005-0054-8/TABLES/2

Roy SM, Minasov G, Arancio O, Chico LW, Van Eldik LJ, Anderson WF, Pelletier JC, Watterson DM. A Selective and Brain Penetrant p38αMAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction. 2019;62(11):5298–5311. doi:10.1021/acs.jmedchem.9b00058

Ohori M, Kinoshita T, Okubo M, Sato K, Yamazaki A, Arakawa H, Nishimura S, Inamura N, Nakajima H, Neya M, Miyake H, Fujii T. Identification of a selective ERK inhibitor and structural determination of the inhibitor–ERK2 complex. Biochem Biophy. Res Commun. 2005;336(1):357–363. doi:10.1016/j.bbrc.2005.08.082

Tasker A.S., Patel V.F. Discovery of motesanib. In Kinase Inhibitor Drugs / ed. R. Li., J.A. Stafford. –Hoboken, NJ : John Wiley & Sons, Inc., 2009;113–130.

Thompson M.A. Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScoring function. ACS meeting. Philadelphia. 2004.

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi:10.1186/1758-2946-3-33




DOI: https://doi.org/10.15826/chimtech.2024.11.4.20

Copyright (c) 2024 Ekaterina V. Artem’eva, Vladimir V. Sharutin, Alexey P. Krinochkin, Yulia M. Sayfutdinova, Il’ya I. Butorin, Vasiliy S. Gaviko, Yaroslav K. Shtaitz, Maria I. Valieva, Igor S. Kovalev, Olga V. Shabunina, Igor L. Nikonov, Dmitry S. Kopchuk, Grigory V. Zyrya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International