Cover Image

Flow-through chronoamperometric sensor based on pillar[3]arene[2]quinone derivative for nitrophenol determination and its application in a model effluent

Dmitry I. Stoikov, Dominika Kappo, Daniil I. Stoikov, Dmitry N. Shurpik, Ivan I. Stoikov, Gennady A. Evtugyn

Abstract


Electrochemical flow-through sensor based on pillar[3]arene[2]quinone (P[3]A[2]Q) derivative was developed. Nitrophenol determination was based on P[3]A[2]Q redox current changes. Also, the shift of cathodic potential was observed compared to nitrophenol reduction current registration directly. Using carbon black (CB) as a matrix for macrocycle implementation provided the sensor stability in the flow when it was applied with a 3D printed flow-through cell. CB and macrocycle were drop casted from the same aliquot providing one-step modifying layer production by the principle of “one-pot synthesis”. The flow-through chronoamperometric sensor designed allowed determining mononitrophenols in the concentration range of 1 nM – 0.1 mM with the limit of detection (LOD) of 0.5 nM. The linear concentration range of 10 nM – 0.1 mM with LOD of 2 nM was obtained for 2,4-dinitrophenol, 2,6-dinitrophenol and 2,4,6-trinitrophenol. The sensor proposed was tested with a model effluent sample, and sufficient recovery about 98±1% was obtained.

Keywords


flow-through analysis; pillarquinone; nitrophenols determination; electrochemical sensor; macrocycles

Full Text:

PDF

References


Zhang W, Wang R, Luo F, Wang P, Lin Z. Miniaturized electrochemical sensors and their point-of-care applications. Chin Chem Lett. 2020;31(3):589–600. doi:10.1016/j.cclet.2019.09.022

Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun. 2009;11(7):1365–1368. doi:10.1016/j.elecom.2009.05.004

Wang J, Zhou L, Bei J, Xie M, Zhu X, Chen T, Wang X, Du Y, Yao Y. An specific photoelectrochemical sensor based on pillar[5]arenes functionalized gold nanoparticles and bismuth oxybromide nanoflowers for bovine hemoglobin recognition. J Colloid Interface Sci. 2022;620:187–198. doi:10.1016/j.jcis.2022.04.014

Lugger SJD, Houben SJA, Foelen Y, Debije MG, Schenning APHJ, Mulder DJ. Hydrogen-bonded Supramolecular liquid Crystal Polymers: smart Materials with Stimuli-Responsive, Self-Healing, and recyclable Properties. Chem Rev. 2022;122(5):4946–4975. doi:10.1021/acs.chemrev.1c00330

Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev. 2022;51(16):7046–7065. doi:10.1039/D2CS00202G

Lee M, Choi I, Kim A, Paik S, Kim D, Kim H, Nam KW. Supramolecular Metal–organic Framework for the high Stability of aqueous Rechargeable zinc Batteries. ACS Nano. 2024;18(33):22586–22595. doi:10.1021/acsnano.4c08550

Sun P, Qin B, Xu JF, Zhang X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Prog Polym Sci. 2022;124:101486. doi:10.1016/j.progpolymsci.2021.101486

Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐based Supramolecular polymers for biomedical Applications. Angew Chem Int Ed. 2022;61(38):202206763. doi:10.1002/anie.202206763

Han W, Xiang W, Li Q, Zhang H, Yang Y, Shi J, Ji Y, Wang S, Ji X, Khashab NM, Sessler JL. Water compatible supramolecular polymers: recent progress. Chem Soc Rev. 2021;50(18):10025–10043. doi:10.1039/D1CS00187F

Chen J, Zhang Y, Zhao L, Zhang Y, Chen L, Ma M, Du X, Meng Z, Li C, Meng Q. Supramolecular drug Delivery system from Macrocycle-based Self-assembled Amphiphiles for effective Tumor Therapy. ACS Appl Mater & Interfaces. 2021;13(45):53564–53573. doi:10.1021/acsami.1c14385

Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards universal Stimuli-responsive Drug delivery Systems: Pillar[5]arenes synthesis and Self-assembly into nanocontainers with tetrazole Polymers. Nanomaterials. 2021;11(4):947. doi:10.3390/nano11040947

Liu X, Sun X, Liang G. Peptide-based supramolecular hydrogels for bioimaging applications. Biomater Sci. 2020;9(2):315–327. doi:10.1039/D0BM01020K

Sato K, Muraoka T, Kinbara K. Supramolecular transmembrane Ion channels Formed by multiblock Amphiphiles. Acc Chem Res. 2021;54(19):3700–3709. doi:10.1021/acs.accounts.1c00397

Rodon-Fores J, Würbser MA, Kretschmer M, Rieß B, Bergmann AM, Lieleg O, Boekhoven J. A chemically fueled supramolecular glue for self-healing gels. Chem Sci. 2022;13(38):11411–11421. doi:10.1039/D2SC03691F

Jeon WS, Moon K, Park SH, Chun H, Ko YH, Lee JY, Lee ES, Samal S, Selvapalam N, Rekharsky MV, Sindelar V, Sobransingh D, Inoue Y, Kaifer AE, Kim K. Complexation of ferrocene Derivatives by the Cucurbit[7]uril Host: A comparative Study of the cucurbituril and cyclodextrin Host Families. J Am Chem Soc. 2005;127(37):12984–12989. doi:10.1021/ja052912c

Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of Peptide-amphiphile Nanofibers. Science. 2001;294(5547): 1684–1688. doi:10.1126/science.1063187

Zhang W, Jin W, Fukushima T, Saeki A, Seki S, Aida T. Supramolecular linear Heterojunction composed of Graphite-like Semiconducting nanotubular Segments. Science. 2011;334(6054):340–343. doi:10.1126/science.1210369

Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. para-bridged Symmetrical Pillar[5]arenes: their Lewis acid Catalyzed synthesis and Host–guest Property. J Am Chem Soc. 2008;130(15):5022–5023. doi:10.1021/ja711260m

Kursunlu AN, Bastug E, Oguz A, Oguz M, Yilmaz M. A highly branched macrocycle-based dual-channel sensor: bodipy and pillar[5]arene combination for detection of Sn (II) & Hg (II) and bioimaging in living cells. Anal Chim Acta. 2022;1196:339542. doi:10.1016/j.aca.2022.339542

Gómez-González B, García-Río L, Basílio N, Mejuto JC, Simal-Gandara J. Molecular recognition by Pillar[5]arenes: evidence for simultaneous Electrostatic and hydrophobic Interactions. Pharmaceutics. 2021;14(1):60. doi:10.3390/pharmaceutics14010060

Shangguan L, Chen Q, Shi B, Huang F. Enhancing the solubility and bioactivity of anticancer drug tamoxifen by water-soluble pillar[6]arene-based host–guest complexation. Chem Commun. 2017;53(70):9749–9752. doi:10.1039/C7CC05305C

Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. Nanoscale. 2019;12(4):2180–2200. doi:10.1039/C9NR09532B

Li L, Chen R, Hu T, Li Y, Wang Q, He C. Novel magnetic pillar[5]arene polymer as adsorbent for rapid removal of organic pollutants in water or air. Microchem J. 2020;153:104524. doi:10.1016/j.microc.2019.104524

Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorganic Chem. 2021;117:105415. doi:10.1016/j.bioorg.2021.105415

Zhu H, Li Q, Zhu W, Huang F. Pillararenes as versatile Building blocks for fluorescent Materials. Acc Mater Res. 2022;3(6):658–668. doi:10.1021/accountsmr.2c00063

Kosiorek S, Rad N, Sashuk V. Supramolecular catalysis by carboxylated Pillar[n]arenes. ChemCatChem. 2020;12(10):2776–2782. doi:10.1002/cctc.202000082

Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta. 2015;144:559–568. doi:10.1016/j.talanta.2015.07.008

Mei Y, Zhang QW, Gu Q, Liu Z, He X, Tian Y. Pillar[5]arene-based Fluorescent sensor Array for biosensing of intracellular Multi-neurotransmitters through Host–guest Recognitions. J Am Chem Soc. 2022;144(5):2351–2359. doi:10.1021/jacs.1c12959

Wang J, Guo X, Zhou Q, Cai Y, Lu B, Wang Y, Yao Y. Pillar[5]arene functionalized au NPs and BiOX (Cl/Br/I) heterojunction constructed the enhanced photo-electrochemical sensor for ultrasensitive detection of serotonin. Colloids Surf A: Physicochem Eng Asp. 2024;688:133511. doi:10.1016/j.colsurfa.2024.133511

Zhang YF, Wang ZH, Yao XQ, Zhang YM, Wei TB, Yao H, Lin Q. Novel tripodal-pillar[5]arene-based chemical sensor for efficient detection and removal paraquat by synergistic effect. Sens Actuators B: Chem. 2021;327:128885. doi:10.1016/j.snb.2020.128885

Yu D, Deng W, Wei X. Supramolecular aggregate of pillar[5]arene-based Cu(II) coordination complexes as a highly selective fluorescence sensor for nitroaromatics and metal ions. Dyes Pigments. 2023;210:110968. doi:10.1016/j.dyepig.2022.110968

Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chin Chem Lett. 2021;32(1):179–183. doi:10.1016/j.cclet.2020.11.055

Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar[5]arene functionalized au NPs for ultrasensitive detection of caffeic acid. Talanta. 2022;243:123322. doi:10.1016/j.talanta.2022.123322

Smolko V, Shurpik D, Porfireva A, Evtugyn G, Stoikov I, Hianik T. Electrochemical aptasensor Based on Poly(neutral Red) and carboxylated Pillar[5]arene for sensitive Determination of aflatoxin M1. Electroanalysis. 2018;30(3):486–496. doi:10.1002/elan.201700735

Stoikov D, Shafigullina I, Shurpik D, Stoikov I, Evtugyn G. A Flow-through Biosensor system Based on Pillar[3]Arene[2]quinone and ferrocene for determination of hydrogen Peroxide and uric Acid. Chemosensors. 2024;12(6):98. doi:10.3390/chemosensors12060098

Stoikov DI, Porfir’eva AV, Shurpik DN, Stoikov II, Evtyugin GA. Electrochemical DNA sensors on the basis of electropolymerized thionine and azure B with addition of pillar[5]arene as an electron transfer mediator. Russ Chem Bull. 2019;68(2):431–437. doi:10.1007/s11172-019-2404-8

Podeh MRH, Bhattacharya SK, Qu M. Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res. 1995;29(2):391–399. doi:10.1016/0043-1354(94)00193-B

Shi Q, Chen M, Diao G. Electrocatalytical reduction of m-nitrophenol on reduced graphene oxide modified glassy carbon electrode. Electrochim Acta. 2013;114:693–699. doi:10.1016/j.electacta.2013.10.108

Boddu V, Kim S, Adkins J, Weimer E, Paul T, Damavarapu R. Sensitive determination of nitrophenol isomers by reverse-phase high-performance liquid chromatography in conjunction with liquid–liquid extraction. Int J Environ Anal Chem. 2017;97(11):1053–1064. doi:10.1080/03067319.2017.1381235

Qu F, Chen P, Zhu S, You J. High selectivity of colorimetric detection of p-nitrophenol based on ag nanoclusters. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2017;171:449–453. doi:10.1016/j.saa.2016.08.043

Khan KO, Assiri MA, Irshad H, Rafique S, Khan AM, Khan AK, Imran M, Shahzad SA. Fluorescence based detection of industrially important and hazardous 4-nitrophenol in real Samples: A combination of extensive optical and theoretical studies. J Photochem Photobiol A: Chem. 2023;442:114805. doi:10.1016/j.jphotochem.2023.114805

ALOthman ZA, Badjah AY, Locatelli M, Ali I. Multi-walled Carbon nanotubes Solid-phase Extraction and capillary Electrophoresis methods for the analysis of 4-cyanophenol and 3-nitrophenol in Water. Molecules. 2020;25(17):3893. doi:10.3390/molecules25173893

Cheng XL, Xia X, Xu QQ, Wang J, Sun JC, Zhang Y, Li SS. Superior conductivity FeSe2 for highly sensitive electrochemical detection of p-nitrophenol and o-nitrophenol based on synergistic effect of adsorption and catalysis. Sens Actuators B: Chem. 2021;348:130692. doi:10.1016/j.snb.2021.130692

He Q, Wang B, Liang J, Liu J, Liang B, Li G, Long Y, Zhang G, Liu H. Research on the construction of portable electro-chemical sensors for environmental compounds quality monitoring. Mater Today Adv. 2023;17:100340. doi:10.1016/j.mtadv.2022.100340

Shamagsumova RV, Kulikova TN, Porfireva AV, Shurpik DN, Stoikov II, Rogov AM, Stoikov DI, Evtugyn GA. Electrochemistry and electrochemical assessment of host–guest complexation of substituted pillar[m]arene[n]quinones. J Electroanal Chem. 2023;938:117444. doi:10.1016/j.jelechem.2023.117444

SanPiN 2.1.7.573-96. Sanitarnye pravila i normy 2.1.7. POChVA, ochistka naselennyh mest, bytovye i promyshlennye othody, sanitarnaya ohrana pochvy. Gigienicheskie trebovaniya k ispol'zovaniyu stochnyh vod i ih osadkov dlya orosheniya i udobreniya. Prilozhenie 1 [SanPiN 2.1.7.573-96. Sanitary rules and regulations 2.1.7. SOIL, cleaning of populated areas, household and industrial waste, sanitary protection of soil. Hygienic requirements for the use of wastewater and its sediments for irrigation and fertilization. Supplement 1]. Moscow: Informacionno-izdatel'skij centr Minzdrava Rossii; 1997. 54 p. Russian.

Kappo D, Kuzin YI, Shurpik DN, Stoikov II, Evtyugin GA. Voltammetric DNA sensor Based on Redox-active Dyes for determining Doxorubicin. J Anal Chem. 2022;77(1):94–100. doi:10.1134/S1061934822010075

Makhmutova LI, Shurpik DN, Mostovaya OA, Lachugina NR, Gerasimov AV, Guseinova A, Evtugyn GA, Stoikov II. A supramolecular electrochemical probe based on a tetrazole derivative pillar[5]arene/methylene blue system. Org & Biomol Chem. 2024;22(21):4353–4363. doi:10.1039/D4OB00591K

Smolko V, Shurpik D, Evtugyn V, Stoikov I, Evtugyn G. Organic acid and DNA sensing with electrochemical Sensor based on carbon Black and Pillar[5]arene. Electroanalysis. 2016;28(6):1391–1400. doi:10.1002/elan.201501080

Smolko VA, Shurpik DN, Shamagsumova RV, Porfireva AV, Evtugyn VG, Yakimova LS, Stoikov II, Evtugyn GA. Electrochemical behavior of pillar[5]arene on glassy carbon electrode and its interaction with Cu2+ and Ag+ ions. Electrochim Acta. 2014;147:726–734. doi:10.1016/j.electacta.2014.10.007

Wei T, Huang X, Zeng Q, Wang L. Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode. J Electroanal Chem. 2015;743:105–111. doi:10.1016/j.jelechem.2015.02.031

Su R, Tang H, Xi F. Sensitive electrochemical detection of p-nitrophenol by pre-activated glassy carbon electrode integrated with silica nanochannel array film. Front Chem. 2022;10:954748. doi:10.3389/fchem.2022.954748

Huang R, Liao D, Liu Z, Yu J, Jiang X. Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol. Sens Actuators B: Chem. 2021;338:129828. doi:10.1016/j.snb.2021.129828

Liu J, Chen Y, Guo Y, Yang F, Cheng F. Electrochemical sensor for o‐nitrophenol Based on β‐cyclodextrin Functionalized graphene Nanosheets. J Nanomater. 2013;2013(1):1-6. doi:10.1155/2013/632809

Arfin T, Bushra R, Mohammad F. Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graphene Technol. 2016;1(1-4):1–15. doi:10.1007/s41127-016-0002-1

Li C, Wu Z, Yang H, Deng L, Chen X. Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: effective and simultaneous determination of o- and p-nitrophenols. Sens Actuators B: Chem. 2017;251:446–454. doi:10.1016/j.snb.2017.05.059

Xu X, Liu Z, Zhang X, Duan S, Xu S, Zhou C. β-cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim Acta. 2011;58:142–149. doi:10.1016/j.electacta.2011.09.015

Ding Z, Zhao J, Hao Z, Guo M, Li L, Li N, Sun X, Zhang P, Cui J. Simultaneous electrochemical determination of nitrophenol isomers based on macroporous carbon functionalized with amino-bridged covalent organic polycalix[4]arenes. J Hazard Mater. 2022;423:127034. doi:10.1016/j.jhazmat.2021.127034

Gerent GG, Spinelli A. Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. J Hazard Mater. 2017;330:105–115. doi:10.1016/j.jhazmat.2017.02.002

He Q, Wang B, Liu J, Li G, Long Y, Zhang G, Liu H. Nickel/nitrogen-doped carbon nanocomposites: synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. Environ Res. 2022;214:114007. doi:10.1016/j.envres.2022.114007

Hu C, Pan P, Huang H, Liu H. Cr-MOF-based Electrochemical sensor for the detection of P-Nitrophenol. Biosensors. 2022;12(10):813. doi:10.3390/bios12100813

Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater. 2012;201-202:250–259. doi:10.1016/j.jhazmat.2011.11.076

Liu Y, Zhu L, Zhang Y, Tang H. Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens Actuators B: Chem. 2012;171-172:1151–1158. doi:10.1016/j.snb.2012.06.054

Sangamithirai D, Ramanathan S. Electrochemical sensing platform for the detection of nitroaromatics using g-C3N4/V2O5 nanocomposites modified glassy carbon electrode. Electrochim Acta. 2022;434:141308. doi:10.1016/j.electacta.2022.141308

Sangamithirai D, Krishna KR, Pandurangan A. Investigating the synergistic effect of RuO2 nanoparticle-decorated V2O5 nanoflakes for sensitive detection of 2,4-dinitrophenol and 2,4-dinitrotoluene. J. Electroanal. Chem.2024;970:118554. doi: 10.1016/j.jelechem.2024.118554

Faisal M, Alam MM, Ahmed J, Asiri AM, Alsaiari M, Alruwais RS, Madkhali O, Rahman MM, Harraz FA. Efficient detection of 2,6-dinitrophenol with silver Nanoparticle-decorated Chitosan/SrSnO3 nanocomposites by differential Pulse Voltammetry. Biosensors. 2022;12(11):976. doi:10.3390/bios12110976

Asiri AM, Adeosun WA, Marwani HM. Electrocatalytic reduction of 2,6-dinitrophenol on polycongo red decorated glassy carbon electrode for sensing application. J Environ Chem Eng. 2020;8(5):104378. doi:10.1016/j.jece.2020.104378

Rahman MM, Alam MM, Asiri AM, Chowdhury MA, Uddin J. Electrocatalysis of 2,6-dinitrophenol Based on Wet-chemically Synthesized PbO-ZnO Microstructures. Catalysts. 2022;12(7):727. doi:10.3390/catal12070727

John BK, Thara CR, Korah BK, John N, Mathew B. Bioresource-derived multifunctional carbon quantum dots as a fluorescence and electrochemical sensing platform for picric acid and noncytotoxic food storage application. J Ind Eng Chem. 2023;126:546–556. doi:10.1016/j.jiec.2023.06.043

Karthika P, Shanmuganathan S, Viswanathan S. Electrochemical sensor for picric acid by using molecularly imprinted polymer and reduced graphene oxide modified pencil graphite electrode. Proc Indian National Sci Acad. 2022;88(3):263–276. doi:10.1007/s43538-022-00084-3

Wang Y, Cao W, Wang L, Zhuang Q, Ni Y. Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim Acta. 2018; 185(6):315. doi:10.1007/s00604-018-2857-8

Gigienicheskie normativy GN 2.1.5.1315-03. Predel'no dopustimye koncentracii (PDK) himicheskih veshchestv v vode vodnyh ob"ektov hozyajstvenno-pit'evogo i kul'turno-bytovogo vodopol'zovaniya [Hygienic Regulations HR 2.1.5.1315-03. Maximum permissible concentrations (MPC) of chemicals in the water of water objects of economic, drinking and cultural water use]. Moscow: Russian Register of Potentially Hazardous Chemical and Biological Substances of the Ministry of Health of the Russian Federation; 2003. 154 p. Russian.




DOI: https://doi.org/10.15826/chimtech.2025.12.1.01

Copyright (c) 2024 Dmitry I. Stoikov, Dominika Kappo, Daniil I. Stoikov, Dmitry N. Shurpik, Ivan I. Stoikov, Gennady A. Evtugyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International