Cover Image

Novel biosorbents based on carboxyethyl chitosan for Allura Red dye contaminated water treatment

Aleksandr A. Drannikov, Elena A. Blinova, Anastasya V. Korel, Alexander G. Samokhin, Polina I. Dubovskaya, Daria V. Lazurenko, Ekaterina O. Zemlyakova, Alexander V. Pestov, Ekaterina A. Litvinova

Abstract


Low biodegradability of several dyes leads to their accumulation in water, causing ecological and health damage. The adsorption and, in particular, biosorption processes are widely applied for the wastewater treatment. This article presents the first comparative study of the Allura red dye removal under neutral pH at 25 oC applying novel biosorbents: carboxyethyl chitosan hydrogel (CEC) and cryogel of carboxyethyl chitosan cross-linked with butanediol-1,4 diglycidyl ether (DEB-CEC). The gels were synthesized in “green” manner, and the characterization revealed porous structure and high swelling for both biopolymer compositions, which are the properties  important for adsorption. The kinetic studies demonstrated that the adsorption rate for DEB-CEC is better represented by pseudo-second-order, while CEC followed better pseudo-first-order kinetics. The adsorption isotherm of Allura Red suited the Temkin model for both samples, with the maximum adsorption capacity of 22.523 mg/g (45.4 μmol/g) and 10.482 mg/g (21.1 μmol/g) for CEC and DEB-CEC, respectively. The results demonstrated that CEC and DEB-CEC polymers can be used as biodegradable and eco-friendly biosorbents for Allura Red dye removal from aqueous solutions, making these biosorbents promising for wastewater treatment and prevention of the azo-dye environmental pollution.

Keywords


carboxyethyl chitosan; cryogel; adsorption; allura red; dye; E129

Full Text:

PDF

References


Pavithra KG, Kumar PS, Jaikumar V, Rajan PS. Removal of colorants from wastewater: A review on sources and treatment strategies. J Ind Eng Chem. 2019;75:1–19. doi:10.1016/j.jiec.2019.02.011

de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The colors of Health: Chemistry, Bioactivity, and market Demand for colorful Foods and natural Food sources of Colorants. Annu Rev Food Sci Technol. 2020;11(1):145–182. doi:10.1146/annurev-food-032519-051729

Hocine H, Benettayeb A, Al-Farraj S, Ali Alkahtane A, Olivier J, Sillanpaa M. Turbidity removal from synthetic Bentonite suspension Using opuntia Ficus-indica (Cactus). Int Rev Civ Eng (IRECE). 2024;15(1):12. doi:10.15866/irece.v15i1.23223

Benkhaya S, El Harfi S, El Harfi A. Classifications, properties and applications of textile dyes: A review. Appl. J. Envir. Eng. Sci. 2017;3(3):311-20 doi:10.48422/IMIST.PRSM/ajees-v3i3.9681

Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Total Environ. 2020;717:137222. doi:10.1016/j.scitotenv.2020.137222

Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E. Decolorization and mineralization of allura Red AC aqueous solutions by electrochemical advanced oxidation processes. J Hazard Mater. 2015;290:34–42. doi:10.1016/j.jhazmat.2015.02.050

Oussadi K, Al-Farraj S, Benabdallah B, Benettayeb A, Haddou B, Sillanpaa M. Wool keratin as a novel, alternative, low-cost adsorbent rich in various –N and –S proteins for eliminating methylene blue from water. Biomass Convers Biorefinery. 2024:1-15. doi:10.1007/s13399-024-05851-4

Amar IA, Abdulqadir MA, Benettayeb A, Lal B, Shamsi SA, Hosseini-Bandegharaei A. Cerium-doped Calcium ferrite for malachite Green dye Removal and antibacterial Activities. Chem Afr. 2024;7(3):1423–41. doi:10.1007/s42250-023-00834-w

Hofseth LJ, Hebert JR, Murphy EA, Trauner E, Vikas A, Harris Q, Chumanevich AA. Allura Red AC is a xenobiotic. Is it also a carcinogen? Carcinogenesis. 2024 Oct 10;45(10):711-20. doi: 10.1093/carcin/bgae057

Renita AA, Gajaria TK, Sathish S, Kumar JA, Lakshmi DS, Kujawa J, Kujawski W. Progress and prospective of the industrial Development and applications of Eco-friendly Colorants: an Insight into environmental Impact and sustainability Issues. Foods. 2023;12(7):1521. doi:10.3390/foods12071521

Feketea G, Tsabouri S. Common food colorants and allergic reactions in children: Myth or reality? Food Chem. 2017 Sep 1;230:578-88. doi: 10.1016/j.foodchem.2017.03.043.

Silva MM, Reboredo FH, Lidon FC. Food colour Additives: A synoptical Overview on their Chemical Properties, applications in food Products, and health Side Effects. Foods. 2022;11(3):379. doi:10.3390/foods11030379

Benkhaya S, M'rabet S, El Harfi A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020;6(1):e03271. doi:10.1016/j.heliyon.2020.e03271

Rovina K, Siddiquee S, Shaarani SM. Extraction, analytical and advanced Methods for detection of allura Red AC (E129) in food and beverages Products. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00798

Scientific opinion on the re-evaluation of allura Red AC (E 129) as a food additive. EFSA J. 2009;7(11):1327. doi:10.2903/j.efsa.2009.1327

Tsuda S. DNA damage Induced by red Food dyes Orally administered to pregnant and male Mice. Toxicol Sci. 2001;61(1):92–99. doi:10.1093/toxsci/61.1.92

Zhang Q, Chumanevich AA, Nguyen I, Chumanevich AA, Sartawi N, Hogan J, Khazan M, Harris Q, Massey B, Chatzistamou I, Buckhaults PJ, Banister CE, Wirth M, Hebert JR, Murphy EA, Hofseth LJ. The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice. Toxicol Rep. 2023 Sep 6;11:221–32. doi: 10.1016/j.toxrep.2023.08.006

McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007;370(9598):1560–1567. doi:10.1016/s0140-6736(07)61306-3

Noorafshan A, Hashemi M, Karbalay-Doust S, Karimi F. High dose Allura Red, rather than the ADI dose, induces structural and behavioral changes in the medial prefrontal cortex of rats and taurine can protect it. Acta Histochem. 2018 Aug;120(6):586-94. doi: 10.1016/j.acthis.2018.07.004

Benkhaya S, M’rabet S, Lgaz H, El Bachiri A, El Harfi A. Dyes: Classification, Pollution, and environmental Effects. Sustain Text: Prod, Process, Manuf & Chem. 2022:1–50. doi:10.1007/978-981-16-5932-4_1

Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 2015;5(39):30801–30818. doi:10.1039/c4ra16959j

Mashkoor F, Nasar A, Inamuddin. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environ Chem Lett. 2020;18(3):605–629. doi:10.1007/s10311-020-00970-6

Alkahtani SA, Abu-Alrub SS, Mahmoud Am. Adsorption of food coloring allura red dye (e129) from aqueous solutions using activated carbon. Int J Food Allied Sci. 2017;3(1):10. doi:10.21620/ijfaas.2017110-26

Ullah R, Iftikhar F, Ajmal M, Shah A, Akhter M, Ullah H, Waseem A. Modified clays as an efficient Adsorbent for brilliant Green, ethyl Violet and allura Red Dyes: kinetic and thermodynamic Studies. Pol J Environ Stud. 2020;29(5):3831–3839. doi:10.15244/pjoes/112363

Saidobbozov S, Nurmanov S, Qodirov O, Parmanov A, Nuraliyev S, Berdimurodov E, Hosseini-Bandegharaei A, Nik WMNBW, Benettayeb A, Mubarak NM, Berdimuradov K. Extraction of indene from local pyrolysis oil and its usage for synthesis of a cationite. Chem Pap. 2024;78(15):8333–50. doi:10.1007/s11696-024-03671-4

Şenol ZM. Effective biosorption of allura red dye from aqueous solutions by the dried-lichen (pseudoevernia furfuracea) biomass. Int J Environ Anal Chem. 2022;102(16):4550–4564. doi:10.1080/03067319.2020.1785439

Ghosh S, Benettayeb A, Meskini M, Lal B, Al-Sharify ZT, Ajala OJ, Osagie C, Malloum A, Al-Najjar SZ, Onyeaka H, Bornman C, Ahmadi S, Igwegbe CA, Hosseini-Bandegharaei A. Advancing wastewater treatment with azolla filiculoides waste: a comprehensive review of adsorption applications. Environ Technol Rev. 2024;13(1):359–78. doi:10.1080/21622515.2024.2354126

Amela K, Hassen MA, Kerroum D. Isotherm and kinetics Study of biosorption of cationic Dye onto banana Peel. Energy Procedia. 2012;19:286–295. doi:10.1016/j.egypro.2012.05.208

Saha TK, Bishwas RK, Karmaker S, Islam Z. Adsorption characteristics of allura Red AC onto sawdust and hexadecylpyridinium Bromide-treated Sawdust in aqueous Solution. ACS Omega. 2020;5(22):13358–13374. doi:10.1021/acsomega.0c01493

Benettayeb A, Ahamadi S, Ghosh S, Malbenia John M, Mitchel CR, Haddou B. Natural adsorbents for the removal of emerging pollutants and its adsorption mechanisms. Sustain Technol Remediat Emerg Pollut Aqueous Environ. 2024:63–78. doi:10.1016/B978-0-443-18618-9.00013-9

Piccin JS, Dotto GL, Vieira MLG, Pinto LAA. Kinetics and mechanism of the food Dye FD&C red 40 adsorption onto Chitosan. J Chem & Eng Data. 2011;56(10):3759–3765. doi:10.1021/je200388s

Bankole DT, Inyinbor AA, Oluyori AP, Arowolo MO. Adsorptive removal of synthetic food dyes using low-cost biochar: efficiency prediction, kinetics and desorption index evaluation. Bioresour. Technol. Rep. 2024;25:101709. doi:10.1016/j.biteb.2023.101709

Schio RR, Gonçalves JO, Mallmann ES, Pinto D, Dotto GL. Development of a biosponge based on luffa cylindrica and crosslinked chitosan for allura red AC adsorption. Int. J. Biological Macromol. 2021;192:1117–22. doi:10.1016/j.ijbiomac.2021.10.096

da Rosa Schio R, Cruz da Rosa B, Gonçalves Salau NP, Stoffels Mallmann E, Dotto GL. Fixed‐bed Adsorption of allura Red dye on Chitosan/polyurethane Foam. Chem. Eng. & Technol. 2019;42(11):2434–42. doi:10.1002/ceat.201800749

Benettayeb A, Ghosh S, Usman M, Seihoub FZ, Sohoo I, Chia CH, Sillanpää M. Some Well-known Alginate and chitosan Modifications used in Adsorption: A Review. Water. 2022;14(9):1353. doi:10.3390/w14091353

Boamah PO, Huang Y, Hua M, Zhang Q, Wu J, Onumah J, Sam-Amoah LK, Boamah PO. Sorption of heavy metal ions onto carboxylate chitosan derivatives—A mini-review. Ecotoxicol Environ Saf. 2015;116:113–120. doi:10.1016/j.ecoenv.2015.01.012

Reyna G. SD, Yedidia VP, María del Rosario MM, Jaime LC, Dalia I. SM, Ma. A. CM. Behavior of the adsorption of allura Red dye by chitosan beads and nanoparticles. Nanotechnol Environ Eng. 2023;8(1):49–62. doi:10.1007/s41204-022-00268-8

Dotto GL, Vieira MLG, Esquerdo VM, Pinto LAA. Equilibrium and thermodynamics of azo dyes biosorption onto spirulina platensis. Braz J Chem Eng. 2013;30(1):13–21. doi:10.1590/S0104-66322013000100003

Benettayeb A, Usman M, Tinashe CC, Adam T, Haddou B. A critical review with emphasis on recent pieces of evidence of moringa oleifera biosorption in water and wastewater treatment. Environ Sci Pollut Res. 2022;29(32):48185–209. doi:10.1007/s11356-022-19938-w

Benettayeb A, Hadj Brahim M, Lal B, Al-Farraj S, Belkacem M, John Masamvu M, Haddou B, Ali Alkahtane A, Chia C, Sillanpaa M, Ghosh S, Hosseini-Bandegharaei A. Insights into logical method selection for modification of chitosan and alginate towards the adsorption of heavy metal ions: a review. Environ Technol Rev. 2024;13(1):398–20. doi:10.1080/21622515.2024.2354519

Pestov A, Bratskaya S. Chitosan and its Derivatives as highly Efficient polymer Ligands. Molecules. 2016;21(3):330. doi:10.3390/molecules21030330

Benettayeb A, Haddou B. New biosorbents based on the seeds, leaves and husks powder of moringa oleifera for the effective removal of various toxic pollutants. Int J Environ Anal Chem. 2023;103(18):6859–84. doi:10.1080/03067319.2021.1963714

Şen NE, Şenol ZM. Effective removal of allura red food dye from water using cross-linked chitosan-diatomite composite beads. Int J Biological Macromol. 2023;253:126632. doi:10.1016/j.ijbiomac.2023.126632

Gonçalves JO, Silva KA, Dotto GL, Pinto LAA. Adsorption kinetics of dyes in single and binary Systems using Cyanoguanidine-crosslinked Chitosan of different Deacetylation Degrees. J Polym Environ. 2018;26(6):2401–2409. doi:10.1007/s10924-017-1133-z

Wang J, Chen C. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 2014;160:129–41. doi:10.1016/j.biortech.2013.12.110

Shankar S, Joshi S, Srivastava RK. A review on heavy metal biosorption utilizing modified chitosan. Environ Monit Assess. 2023;195(11). doi:10.1007/s10661-023-11963-7

Ali HB, Mansour R. Modeling of the adsorption of acidic dyes by chitosan using both kinetic and thermodynamic comparisons. J Text Inst. 2024;115(11):2214–23. doi:10.1080/00405000.2023.2283822

Skorik YA, Pestov AV, Kodess MI, Yatluk YG. Carboxyalkylation of chitosan in the gel state. Carbohydr Polym. 2012;90(2):1176–1181. doi:10.1016/j.carbpol.2012.06.072

Adi Sulianto A, Adiyaksa IP, Wibisono Y, Khan E, Ivanov A, Drannikov A, Ozaltin K, Di Martino A. From fruit Waste to hydrogels for agricultural Applications. Clean Technol. 2023;6(1):1–17. doi:10.3390/cleantechnol6010001

Rahman MS, Rana MM, Spitzhorn LS, Akhtar N, Hasan MZ, Choudhury N, Fehm T, Czernuszka JT, Adjaye J, Asaduzzaman SM. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater. 2019;8(3):137–54. doi:10.1007/s40204-019-0113-x

Murcia-Salvador A, Pellicer JA, Fortea MI, Gómez-López VM, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA. Adsorption of direct Blue 78 using Chitosan and cyclodextrins as Adsorbents. Polymers. 2019;11(6):1003. doi:10.3390/polym11061003

Ho Y. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34(3):735–742. doi:10.1016/s0043-1354(99)00232-8

Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963;89:31–60.

Bensalah J. Removal of the textile dyes by a resin adsorbent polymeric: insight into optimization, kinetics and isotherms adsorption phenomenally. Inorg Chem Commun. 2024;161:111975. doi:10.1016/j.inoche.2023.111975

Wang Y, Wang C, Huang X, Zhang Q, Wang T, Guo X. Guideline for modeling solid-liquid adsorption: Kinetics, isotherm, fixed bed, and thermodynamics. Chemosphere. 2024;349:140736. doi:10.1016/j.chemosphere.2023.140736

Murcia-Salvador A, Pellicer JA, Fortea MI, Gómez-López VM, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA. Adsorption of direct Blue 78 using Chitosan and cyclodextrins as Adsorbents. Polymers. 2019;11(6):1003. doi:10.3390/polym11061003

Debord J, Chu KH, Harel M, Salvestrini S, Bollinger JC. Yesterday, Today, and Tomorrow. evolution of a sleeping Beauty: the Freundlich Isotherm. Langmuir. 2023;39(8):3062–3071. doi:10.1021/acs.langmuir.2c03105

Yetgin S, Amlani M. Agricultural low-cost waste adsorption of methylene blue and modelling linear isotherm method versus nonlinear prediction. Clean Technol Environ Policy. 2024. doi:10.1007/s10098-024-02928-6

Skatova AV, Boroda AV, Privar YO, Slobodyuk AB, Kantemirova EV, Bratskaya SY. Hydrogels of N-(2-Carboxyethyl)chitosan with Vanillin. Polym Sci Ser B. 2022;64(5):699–706. doi:10.1134/s1560090422700361

Ibrahim HM, Mostafa M, Kandile NG. Potential use of N-carboxyethylchitosan in biomedical applications: Preparation, characterization, biological properties. Int J Biolog Macromol. 2020;149:664–671. doi:10.1016/j.ijbiomac.2020.01.299

Bratskaya S, Skatova A, Privar Y, Boroda A, Kantemirova E, Maiorova M, Pestov A. Stimuli-responsive Dual Cross-linked N-carboxyethylchitosan Hydrogels with tunable Dissolution Rate. Gels. 2021;7(4):188. doi:10.3390/gels7040188

Benettayeb A, Masamvu JM, Chitepo RM, Haddou B, Sillanpaa M, Ghosh S. Facile fabrication of new bioadsorbents from moringa oleifera and alginate for efficient removal of uranium(VI). J Radioanal Nucl Chem. 2024;333(5):2369–87. doi:10.1007/s10967-024-09470-1

B. Guo, J. Qu, X. Zhao and M. Zhang, Degradable Conductive Self-Healing Hydrogels Based on Dextran-Graft-Tetraaniline and N-Carboxyethyl Chitosan as Injectable Carriers for Myoblast Cell Therapy and Muscle Regeneration, Acta Biomater., 2019, 84, 180–93. doi:10.1016/j.actbio.2018.12.00

Korel A, Samokhin A, Zemlyakova E, Pestov A, Blinova E, Zelikman M, Tkachenko V, Bets V, Kretien S, Arzhanova E, Litvinova E. A carboxyethylchitosan Gel Cross-linked with glutaraldehyde as a candidate Carrier for biomedical Applications. Gels. 2023;9(9):756. doi:10.3390/gels9090756

Zhao H, Zhang Y, Zhou C, Zhang C, Liu B. Engineering pH responsive carboxyethyl chitosan and oxidized pectin -based hydrogels with self-healing, biodegradable and antibacterial properties for wound healing. Int J Biolog Macromol. 2023;253:127364. doi:10.1016/j.ijbiomac.2023.127364

Yang S, Dong Q, Yang H, Liu X, Gu S, Zhou Y, Xu W. N-carboxyethyl chitosan fibers prepared as potential use in tissue engineering. Int J Biolog Macromol. 2016;82:1018–1022. doi:10.1016/j.ijbiomac.2015.10.078

Horathal Pedige MP, Sugawara A, Uyama H. Multifunctional chitosan Nanofiber-based Sponge materials Using Freeze–thaw and Post-Cross-linking Method. ACS Omega. 2024. doi:10.1021/acsomega.4c04317

Waresindo WX, Luthfianti HR, Priyanto A, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Freeze–thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications. Mater Res Express. 2023;10(2):024003. doi:10.1088/2053-1591/acb98e

Georgin J, Stracke Pfingsten Franco D, Gindri Ramos C, Nguyen Tran H, Benettayeb A, Imanova G, Ali I. Recent advances in removing glyphosate herbicide and its aminomethylphosphonic acid metabolite in water. J Mol Liq. 2024;402:124786. doi:10.1016/j.molliq.2024.124786




DOI: https://doi.org/10.15826/chimtech.2024.11.4.15

Copyright (c) 2024 Aleksandr A. Drannikov, Elena A. Blinova, Anastasya V. Korel, Alexander G. Samokhin, Polina I. Dubovskaya, Daria V. Lazurenko, Ekaterina O. Zemlyakova, Alexander V. Pestov, Ekaterina A. Litvinova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International