Cover Image

Ag-decorated hollow copper microtubes as a photocathode for the hydrogen evolution reaction

Dmitry S. Dmitriev, Maksim I. Tenevich

Abstract


This paper presents the results of a photoelectrocatalytic study for a copper-silver system obtained in the form of microtubes using electrochemical template synthesis. CuOx/Cu hollow microtubes (HT) decorated with nanoscale silver particles by electrodeposition demonstrate the cathode photocurrent in 7.6 uAcm–2 when using LED light sources in the UVA-Vis spectral region and low polarization values. It was shown that the highest intensity of the photoresponse is achieved in the visible region at a wavelength of 450 nm. The stability test suggests that the retention of Ag/CuOx-HT is 95% after 12 hours of functioning.

Keywords


photocathode; hollow microtubes; copper; template synthesis; hydrogen evolution reaction

Full Text:

PDF

References


Khusnun NF, Arshad A, Jalil AA, Firmansyah L, Hassan NS, Nabgan W, et al. An avant-garde of carbon-doped photoanode materials on photo-electrochemical water splitting performance: A review. J Electroanal Chem. 2023;929:117139. doi:10.1016/j.jelechem.2022.117139

Sawal MH, Jalil AA, Khusnun NF, Hassan NS, Bahari MB. A review of recent modification strategies of TiO2-based photoanodes for efficient photoelectrochemical water splitting performance. Electrochim Acta. 2023;467:143142. doi:10.1016/j.electacta.2023.143142

Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J Alloys Compd. 2021;863:158734. doi:10.1016/j.jallcom.2021.158734

Mohammadnezhad G, Momeni MM, Nasiriani F. Enhanced photoelectrochemical performance of tin oxide decorated tungsten oxide doped TiO2 nanotube by electrodeposition for water splitting. J Electroanal Chem. 2020;876:114505. doi:10.1016/j.jelechem.2020.114505

Momeni MM, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem. 2015.739:149–55. doi:10.1016/j.jelechem.2014.12.030

Li C, He J, Xiao Y, Li Y, Delaunay J-J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ Sci. 2020;13:3269–306. doi:10.1039/D0EE02397C

Chen P, Zhang P, Cui Y, Fu X, Wang Y. Recent progress in copper-based inorganic nanostructure photocatalysts: properties, synthesis and photocatalysis applications. Mater Today Sustain. 2023;21:100276. doi:10.1016/j.mtsust.2022.100276

Jeong D, Jo W, Jeong J, Kim T, Han S, Son M-K, et al. Characterization of Cu2O/CuO heterostructure photocathode by tailoring CuO thickness for photoelectrochemical water splitting. RSC Adv. 2022;12:2632–40. doi:10.1039/D1RA08863G

Son M-K. Key Strategies on Cu2O Photocathodes toward Practical Photoelectrochemical Water Splitting. Nanomaterials. 2023.13:3142. doi:10.3390/nano13243142

Guan L, Shu Y, Jiang Y, Zhao F, Wei Y, Yan J, et al. Rational design and fabrication of Cu2O film as photoelectrode for water splitting. J Alloys Compd. 2023;956:170283. doi:10.1016/j.jallcom.2023.170283

Su Q, Zuo C, Liu M, Tai X. A Review on Cu2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules. 2023;28:5576. doi:10.3390/molecules28145576

John S, Roy SC. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion. Appl Surf Sci. 2020;509:144703. doi:10.1016/j.apsusc.2019.144703

Pataniya PM, Sumesh C. Paper-Based Flexible and Photosensitive Electrodes for Electrochemical Hydrogen Evolution. ACS Appl Energy Mater. 2021;4:4815–22. doi:10.1021/acsaem.1c00377

Pataniya PM, Sumesh CK. Enhanced electrocatalytic hydrogen evolution reaction by injection of photogenerated electrons in Ag/WS2 nanohybrids. Appl Surf Sci. 2021;563:150323. doi:10.1016/j.apsusc.2021.150323

Markovskaya D V., Lomakina VA, Kozlova EA. Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride. Chim Techno Acta. 2024;11:1–10. doi:10.15826/chimtech.2024.11.2.08

Baran T, Visibile A, Busch M, He X, Wojtyla S, Rondinini S, et al. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules. 2021;26:7271. doi:10.3390/molecules26237271

Uan J-Y, Chen Y-J, Hsu Y-H, Arpornwichanop A, Chen Y-S. Deposition of Li/Al layered double hydroxides on the graphite felts for the performance improvement of an all-vanadium redox flow battery. Mater Today Commun. 2021;27:102280. doi:10.1016/j.mtcomm.2021.102280

Bodhankar PM, Sarawade PB, Kumar P, Vinu A, Kulkarni AP, Lokhande CD, et al. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. Small. 2022;18:2107572. doi:10.1002/smll.202107572

Polat K. A low cost flexible photocatalyst based on silver decorated Cu2O nanowires. SN Appl Sci. 2020;2:1542. doi:10.1007/s42452-020-03354-1

Hu Y, Min X, Qi Y, Zhang W, Liu C, Wang Y, et al. Enhanced Photoelectrochemical Hydrogen Evolution on CuBi2O4 Photocathode with Silver as Conductive Channels. Catal Letters. 2024;154:34–41. doi:10.1007/s10562-023-04292-4

Xia Q, Liu X, Li H, Guan Y, Chen J, Chen Y, et al. Construction of the Z-scheme Cu2O-Ag/AgBr heterostructures to enhance the visible-light-driven photocatalytic water disinfection and antibacterial performance. J Alloys Compd. 2024;980:173665. doi:10.1016/j.jallcom.2024.173665

Lu W, Gu T, Jing X, Zhu Y, Yu L, Hou S, et al. Ag Nanoparticles-decorated p-type CuO/n-type ZnO heterojunction nanofibers with enhanced photocatalytic activities for dye degradation and disinfection. J Alloys Compd. 2023;968:171864. doi:10.1016/j.jallcom.2023.171864

Li Y, Luo K. Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting. RSC Adv. 2019;9:8350–4. doi:10.1039/C9RA00865A

Park JE, Hu Y, Krizan JW, Gibson QD, Tayvah UT, Selloni A, et al. Stable Hydrogen Evolution from an AgRhO 2 Photocathode under Visible Light. Chem Mater. 2018;30:2574–82. doi:10.1021/acs.chemmater.7b04911

Dmitriev DS, Martinson KD, Popkov VI. Electrochemical template synthesis of copper hollow microtubes with dendritic surface and advanced HER performance. Mater Lett. 2021;305:130808. doi:10.1016/j.matlet.2021.130808

Yin T-H, Liu B-J, Lin Y-W, Li Y-S, Lai C-W, Lan Y-P, et al. Electrodeposition of Copper Oxides as Cost-Effective Heterojunction Photoelectrode Materials for Solar Water Splitting. Coatings. 2022;12:1839. doi:10.3390/coatings12121839




DOI: https://doi.org/10.15826/chimtech.2024.11.4.17

Copyright (c) 2024 Dmitry S. Dmitriev, Maksim I. Tenevich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International