Cover Image

Electrochemical sensor for the detection of serine β-lactamase catalytic activity

Victoria V. Shumyantseva, Tatiana V. Bulko, Galina V. Presnova, Vitaly G. Grigorenko, Maya Yu. Rubtsova

Abstract


A new approach is proposed based on the use of electrodes modified with carbon nanomaterials to determine enzymatic activity and screening for inhibitors of serine β-lactamases such as extended spectrum β-lactamases (ESBLs). These enzymes are responsible for the development of antibiotic resistance of pathogenic bacteria to β-lactam antibiotics. Electrochemical oxidation of cephalosporin antibiotic cefotaxime was effectively registered at a potential E from +596 to +625 mV (relative to Ag/AgCl). This property makes it possible to determine the change in cefotaxime concentration in solution upon interaction with serine β-lactamases. By analyzing the electrochemical characteristics of the cefotaxime oxidation reaction, the kinetic parameters of its hydrolysis catalyzed by the serine β-lactamase CTX-M-116 were determined. The Michaelis constant was KM = 50 µM and the maximum rate of the catalytic reaction was 1.67∙10–6 M/min. A comparative analysis of the electrochemical parameters of the enzyme/substrate cefotaxime and enzyme/substrate cefotaxime/inhibitor sulbactam (SBT) systems was carried out. Inhibition of β-lactamase by sulbactam was characterized by an IC50 value of 2.5 μM. The proposed approach can be used for screening new substrates and inhibitors of β-lactamases.

Keywords


electroanalysis; nanostructured screen-printed electrodes; β-lactamase; cefotaxime; sulbactam; bioelectrochemistry

Full Text:

PDF

References


Bottari F, Blust R, De Wael K. Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics. Curr Opin Electrochem. 2018;10:136–142. doi:10.1016/j.coelec.2018.05.015

Zdarska V, Kolar M, Mlynarcik P. Occurrence of beta-lactamases in bacteria. Infect Genet Evol. 2024;122:105610. doi:10.1016/j.meegid. 2024.105610

Kang SJ, Kim DH, Lee BJ. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance. Biophys Chem. 2024;309:107228. doi:10.1016/j.bpc.2024.107228

Giguère S, Prescott JF. Antimicrobial therapy in veterinary medicine. In: Dowling P.M. editor. 5th ed. Wiley and Sons. Inc.; 2013. doi:10.1002/9781118675014

Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q et al. Advances in the detection of β-lactamase: A review. Int J Biol Macromol. 2023;251:126159. doi:10.1016/j.ijbiomac.2023.126159

Mojica MF, Rossi MA, Vila AJ. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022;.22:e28–e34. doi:10.1016/S1473-3099(20)30868-9

Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat. Rev Microbiol. 2015;13:42–51. doi:10.1038/nrmicro3380

Egorov АМ, Ulyashova ММ, Rubtsova MYu. Bacterial enzymes and antibiotic resistance. Acta Nat. 2018;10:33–48. doi:10.32607/20758251-2018-10-4-33-48

Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62:1076–1118. doi:10.1128/AAC.01076-18

Egorov A, Ulyashova M, Rubtsova M.Impact of Key and Secondary Drug Resistance Mutations on Structure and Activity of β-Lactamases. In: Antibiotic Drug Resistance. Wiley. 2019;119–140. doi:10.1002/9781119282549.ch6

Babic M, Hujer AM, Bonomo RA. What ’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat. 2006;9:142–156. doi:10.1016/j.drup.2006.05.005

Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 2021;3:dlab092. doi:10.1093/jacamr/dlab092

Qais FA, Ahmad I. In vitro interaction of cefotaxime withcalf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies. J Pharm Biomed Anal. 2018;149:193–205. doi:10.1016/j.jpba.2017.10.016

Fursova N, Pryamchuk S, Kruglov A. The novel CTX-M-116 β-lactamase gene discovered in Proteus mirabilis is composed of parts of the CTX-M-22 and CTX-M-23 genes. Antimicrob Agents Chemother. 2013;57:1552–1555. doi:10.1128/AAC.01471-12

Liu G, Li W, Li S, Xu J, Wang X, Xu H, et al. Culture-free detection of β-lactamase-Producing bacteria in urinary tract infections using a paper sensor. Biosens Bioelectron. 2024;257:116300. doi:10.1016/j.bios.2024.116300

Grigorenko VG, Andreeva IP, Rubtsova MY, Deygen I M, Antipin RL, Majouga AG, et al. Novel Non-β-Lactam Inhibitor of β-Lactamase TEM-171 Based on Acylated Phenoxyaniline. Biochimie. 2017; 132: 45–53. doi:10.1016/j.biochi.2016.10.011

Dos Santos M, Wrobel E, dos Santos V, Quinaia SP, Fujiwara ST, Garcia JR, et al. Development of an electrochemical sensor based on LbL films of Pt nanoparticles and humic acid. J Electrochem Soc. 2016;163:499–506. doi:10.1149/2.1001609jes

Wang J. Analytical Electrochemistry, 3rd ed.; JohnWiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p. 32. P. 202. doi:10.1002/0471790303

Shumyantseva V, Bulko T, Pronina V, Kanashenko S, Pokrovskaya M, Aleksandrova S, et al. Electroenzymatic Model System for the Determination of Catalytic Activity of Erwinia carotovora L-Asparaginase. Processes. 2022;10:1313. doi:10.3390/pr10071313

Shumyantseva VV, Kuzikov AV, Masamrekh RA, Bulko TV, Archakov AI. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron. 2018;15:192–204. doi:10.1016/j.bios.2018.08.040

Koroleva P., Bulko TV, Agafonova LE, Shumyantseva VV. Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. Biochemistry(Mosc). 2023;88:1645-1657. doi:10.1134/S0006297923100176

Mi L, Wang Z, Yang W, Huang C, Zhou B, Hu Y, et al. Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. TrAC. 2023;158:116791. doi:10.1016/j.trac.2022.116791

Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, et al. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta. 2023;257:124341. doi:10.1016/j.talanta.2023.124341

Sfragano PS, Moro G, Polo F, Palchetti I. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors (Basel). 2021;11:246. doi:10.3390/bios11080246

Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases – Innovations and applications for monitoring proteolytic activity. Chem Soc Rev. 2022;51:2081–2120. doi:10.1039/d1cs00798j

Shumyantseva V, Agafonova L, Bulko T, Kuzikov A, Masamrekh R, Yuan J, et al.Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochem (Mosc). 2021;86:S140–S151. doi:10.1134/S0006297921140108

Sumitha MS, Xavier TS. Recent advances in electrochemical biosensors – A brief review. Hybrid Adv. 2023;2:100023. doi:10.1016/j.hybadv.2023.100023

García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open. 2021;3:100032. doi:10.1016/j.talo.2021.100032

Paimard G, Ghasali E, Baeza M. Screen-printed electrodes: Fabrication, modification, and biosensing applications. Chemosensors. 2023;11:113. doi:10.3390/chemosensors11020113

Carrara S, Baj-Rossi C, Boero C, De Micheli G. Do Carbon Nanotubes contribute to Electrochemical Biosensing? Electrochim Acta. 2014;128:102–112. doi:10.1016/j.electacta.2013.12.123

Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens Bioelectron 2018;121:125–136. doi:10.1016/j.bios.2018.08.051

Sigolaeva LV, Bulko TV, Kozin MS, Zhang W, Köhler M, Romanenko I, et al. Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer. 2019;168:95–103. doi:10.1016/j.polymer.2019.02.005

Manna S, Sharma A, Satpati AK. Electrochemical methods in understanding the redox processes of drugs and biomolecules and their sensing. Curr Opin Electrochem. 2022;32:100886. doi:10.1016/j.coelec.2021.100886

Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-Based Electrochemical Sensors for Detection of Amino Acids. J Pharm Biomed Anal. 2023;230:115390. doi:10.1016/j.jpba.2023.115390

Zhang F, Gu S, Ding Y. Electrooxidation and determination of cefotaxime on Au nanoparticles. poly (L-arginine) modified carbon paste electrode. J Electroanal Chem. 2013;698:25–30. doi:10.1016/j.jelechem.2013.03.010

Compton B, Banks C. Understanding Voltammetry, 2nd ed.; Imperial College Press: London, UK, 2011. doi:10.1142/p726

Nicholson RS, Shain I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Analyt Chem. 1964;36:706–723. doi:10.1021/ac60210a007

Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons Inc.: New York, NY, USA,2001.

Li R, Chen X, Zhou C, DaiQ-Q, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem. 2022;242:114677. doi:10.1016/j.ejmech.2022.114677

Robertson JG. Mechanistic Basis of Enzyme-Targeted Drugs. Biochem. 2005;44:5561-5571. doi:10.1021/bi050247e




DOI: https://doi.org/10.15826/chimtech.2024.11.4.07

Copyright (c) 2024 Victoria V. Shumyantseva, Tatiana V. Bulko, Galina V. Presnova, Vitaly G. Grigorenko, Maya Yu. Rubtsova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International