Cover Image

Composite electrochemical coatings of Ni-CrB2 from sulfuric acid and sulfamate electrolytes: formation, structure and properties

Polina Petukhova, Evdokiya Bushueva, Oksana Novgorodtseva

Abstract


Electrodeposited coatings are in demand in many industries: due to the high adhesive strength to the base metal, they can be applied to complex-shaped products, and the thickness of the deposited coating can be controlled. However, standard electrolytic coatings do not always meet the necessary operating requirements. In this case, the formation of composite electrolytic coatings, which consist in the modification of electrolytes by various dispersed particles, becomes an urgent task. These particles are introduced into the electrolyte and deposited together with the precipitate metals, which leads to changes in the coating properties. In this article, the structure, adhesive and corrosion properties of nickel-chromium diboride composite coatings obtained in the electrodeposition process are studied. Precipitation was carried out in sulfuric acid and sulfamate electrolytes with a concentration of dispersed chromium diboride particles of 10-40 g/l. The coatings consist of nickel and CrB2 phases. The adhesive strength of the coating with a steel base is satisfactory; chipping and peeling were not observed. The corrosion resistance of sulfamate electrolyte coatings is higher than that of the coatings obtained from sulfuric acid electrolyte due to the compactness of nickel precipitates. Chromium diboride in the coating provides 1.5-2 times greater corrosion resistance.

Keywords


electrodeposition; nickel plating; composite electrolytic coatings; chromium diboride; corrosion resistance

Full Text:

PDF

References


Zhang H, Wang J, Chen S, Wang H, He Y, Ma C. Ni–SiC composite coatings with improved wear and corrosion resistance synthesized via ultrasonic electrodeposition. J Ceram Int. 2021;47(7):9437–9446. doi:10.1016/j.ceramint.2020.12.076

Ling L, Cai S, Li Q, Sun J, Bao X, Xu G. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. JMA. 2022;10(1):62–80. doi:10.1016/j.jma.2021.05.014

Wu Y, Wu L, Yao W, Jiang B, Wu J, Chen Y, Chen X, Zhan Q, Zhang G, Pan F. Improved corrosion resistance of AZ31 Mg alloy coated with MXenes/MgAl-LDHs composite layer modified with yttrium. Electrochimica Acta. 2021;374:137913. doi:10.1016/j.electacta.2021.137913

Drobiaz EA, Golkovsky MG, Burov VG, Andriushkina VE, Batyrov BB. Synthesis of Corrosion-Resistant Coatings by Non–Vacuum Electron Beam Surfacing: Production, Structure, and Properties. Russ Phys J. 2024;67(5):542–549. doi:10.1007/s11182-024-03155-8

Santana DA, Koga GY, Wolf W, Bataev IA, Ruktuev AA, Bolfarini C, Kiminami CS, Botta WJ, Jorge Jr AM. Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding. Surface Coatings Technol. 2020;386:125466. doi:10.1016/j.surfcoat.2020.125466

Krylova TA, Ivanov KV, Chumakov YaA, Trotsenko RV. Corrosion and Wear Resistance of Coatings Produced by Nonvacuum Electron Beam Cladding of Refractory Carbides on Low-Carbon Steel. Inorg Mater. 2020;56(3):328–332. doi:10.1134/S0020168520030097

Chu Z, Deng W, Zheng X, Zhou Y, Zhang C, Xu J, Gao L. Corrosion Mechanism of Plasma-Sprayed Fe-Based Amorphous Coatings with High Corrosion Resistance. J Therm Spray Tech. 2020;29:1111–1118. doi:10.1007/s11666-020-01030-9

Wozniak A, Staszuk M. Reimann L et al. The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Archiv Civ Mech Eng. 2021;21:148. doi:10.1007/s43452-021-00297-1

Lu K, Zhu J, Guo D, Yang M, Sun H, Wang Z, Hui X, Wu Y. Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review. Coatings. 2022;12:1023. doi:10.3390/coatings12071023

Shan B, Chen J, Chen S, Ma M, Ni L, Shang F, Zhou L. Laser cladding of Fe-based corrosion and wear-resistant alloy: Genetic design, microstructure, and properties. Surface and Coatings Technol. 2022;433:128117. doi:10.1016/j.surfcoat.2022.128117

Pepeira JC, dos Santos LPM, Alcanfor AAC et al. Effects of electrodeposition parameters on corrosion resistance of ZnSn coatings on carbon steel obtained from eutectic mixture based on choline chloride and ethylene glycol. J Alloys Compd. 2021;886:161159. doi:10.1016/j.jallcom.2021.161159

Kumar, CMP, Lakshmikanthan A, Chandrashekarappa MPG, Pimenov DY, Giasin K. Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant. Coatings. 2021;11(6):712. doi:10.3390/coatings11060712

Abedini B, Parvini Ahmadi P, Yazdani S, Magagnin L. Electrodeposition and corrosion behavior of Zn−Ni−Mn alloy coatings deposited from alkaline solution. Trans Nonferrous Metals Soc China. 2020;30(2):548-558. doi:10.1016/S1003-6326(20)65234-7

Safavi MS, Tanhaei M, Ahmadipour MF, Adli RG, Mahdavi S, Walsh FC. Electrodeposited Ni-Co alloy-particle composite coatings: A comprehensive review. Surface Coatings Technol. 2020;382:125153. doi:10.1016/j.surfcoat.2019.125153

Rai PK, Gupta A. Investigation of surface characteristics and effect of electrodeposition parameters on nickel-based composite coating. Mater Today Proceed. 2021;44:1079–1085. doi:10.1016/j.matpr.2020.11.182

Rao H, Li W, Luo Z, Liu H, Zhu L, Chen H. Nucleation and growth mechanism of Ni/SiC composite coatings electrodeposited with micro- and nano-SiC particles. J Mater Res Technol. 2024;30:3079–3091. doi:10.1016/j.jmrt.2024.04.008

Sajjadnejad M, Haghshenas SMS, Badr P, Setoudeh N, Hosseinpour S. Wear and tribological characterization of nickel matrix electrodeposited composites: A review. Wear. 2021;486–487:204098. doi:10.1016/j.wear.2021.204098

Noorbakhsh Nezhad AH, Rahimi E, Arefinia R, Davoodi A, Hosseinpour S. Effect of Substrate Grain Size on Structural and Corrosion Properties of Electrodeposited Nickel Layer Protected with Self-Assembled Film of Stearic Acid. Mater. 2020;13(9):2052. doi:10.3390/ma13092052

Torkamani AD, Velashjerdi M, Abbas A, Bolourchi M, Maji P. Electrodeposition of Nickel matrix composite coatings via various Boride particles: A review. J Compos Compd. 2021;2:106–113. doi:10.52547/jcc.3.2.4

Saini A., Singh G, Mehta S. et al. A review on mechanical behaviour of electrodeposited Ni-composite coatings. Int J Interact Des Manuf. 2023;17: 2247–2258. doi:10.1007/s12008-022-00969-z

Gül H, Kılıç F, Uysal M, Aslan S, Alp A, Akbulut H. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition. Appl Surface Sci. 2012;258(10):4260–4267. doi:10.1016/j.apsusc.2011.12.069

Babak Bakhit, Alireza Akbari. Synthesis and characterization of Ni–Co/SiC nanocomposite coatings using sediment co-deposition technique. J Alloys Compd. 2013;560:92–104. doi:10.1016/j.jallcom.2013.01.122

Müller C, Sarret M, Benballa M. ZnNi/SiC composites obtained from an alkaline bath. Surface Coatings Technol. 2003;162(1):49–53. doi:10.1016/S0257-8972(02)00360-2

Seifzadeh D, Rahimzadeh Hollagh A.: Corrosion resistance enhancement of AZ91D magnesium alloy by electroless Ni-Co-P coating and Ni-Co-P-SiO2 nanocomposite. J Mater Eng Perform. 2014;23(11):4109–4121. doi:10.1007/s11665-014-1210-6

Bhogal S, Kumar V, Dhami S, Pablo B. Preparation and properties of electrodeposited Ni-TiO2 composite coating. J. Electrochem. Sci Eng. 2015;5(1):37–45. doi:10.5599/jese.135

Kumar CMP, Lakshmikanthan A, Chandrashekarappa MPG, Pimenov DY, Giasin K. Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant Applications. Coatings. 2021;11:712. doi:10.3390/coatings11060712

Aruna ST, William Grips VK, Rajam KS. Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties. J Alloys Compd. 2009;468(1–2):546–552. doi:10.1016/j.jallcom.2008.01.058

Martyak NM, Seefeldt R. Comparison of nickel methanesulfonate and nickel sulfamate electrolytes. Plat Surf Finish. 2004;91(12):32–37.

Saitou M, Oshiro S, Asadul Hossain SM. Effect of temperature on nickel electrodeposition from a nickel sulfamate electrolyte. J Appl Electrochem. 2008;38:309–313. doi:10.1007/s10800-007-9439-5

State Standard 9.302-88 Unified system of protection against corrosion and aging. Metallic and non-metallic organic coatings. Control methods. Moscow, 1990. 40 p.




DOI: https://doi.org/10.15826/chimtech.2024.11.4.06

Copyright (c) 2024 Polina Petukhova, Evdokiya Bushueva, Oksana Novgorodtseva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International