Cover Image

Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12

Maxim I. Vlasov, Evgenii A. Surzhikov, Alexander Yu. Germov, Evgeniya A. Il'ina, Ilya A. Weinstein

Abstract


Li7La3Zr2O12 is one the most promising materials for Li-conducting solid electrolytes. The incorporation of Ta5+ and Nb5+ into the Zr4+ sites stabilizes its cubic structure and significantly enhances Li-conductivity, due to the formation of Li vacancies. In this research, we have studied the band gap features of Ta and Nd-doped Li7La3Zr2O12. Our findings indicate that Nb ions are present not only in the +5 valence state, but also in the +4 state, leading to the formation of oxygen vacancies. In the case of the Ta-doping, such an effect was not observed. This could be the reason for the approximately one order of magnitude higher lithium conductivity observed in the case of the Ta doping, in comparison to the Nb doping.

Keywords


Li7La3Zr2O12; Ta and Nb doping; band gap; oxygen vacancies; Nb valence state

Full Text:

PDF

References


Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363–386. doi:10.1016/j.nanoen.2017.01.028

Li C, Wang Z, He Z, Li Y, Mao J, Dai K, Yan C, Zheng J. An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Mater Technol. 2021;29:e00297. doi:10.1016/j.susmat.2021.e00297

Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci. 2017;88:325–411. doi:10.1016/j.pmatsci.2017.04.007

Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg Chem. 2011;50(3):1089–1097. doi:10.1021/ic101914e

Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem Commun. 2011;13:1373–1375. doi:10.1016/j.elecom.2011.08.014

Huang M, Dumon A, Nan C. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem Commun. 2012;21:62–64. doi:10.1016/j.elecom.2012.04.032

Janani N, Ramakumar S, Kannan S, Murugan R. Optimization of Lithium Content and Sintering Aid for Maximized Li+ Conductivity and Density in Ta-Doped Li7La3Zr2O12. J Am Ceram Soc. 2015;98(7):2039–2046. doi:10.1111/jace.13578

Ilina E, Lyalin E, Vlasov M, Kabanov A, Okhotnikov K, Sherstobitova E, Zobel M. Structural Features and the Li-Ion Diffusion Mechanism in Tantalum-Doped Li7La3Zr2O12 Solid Electrolytes. ACS Appl Energy Mater. 2022;5:2959−2967. doi:10.1021/acsaem.1c03632

Il’ina EA, Lyalin ED, Antonov BD, Pankratov AA. Lithium-Conducting Solid Electrolytes Synthesized by the Sol-Gel Method in the System Li7La3Zr2O12–Li5La3Nb2O12. Russ J Appl Chem. 2019;92(12):1657–1663. doi:10.1134/S107042721912005X

Vlasov MI, Zainullina VM, Korotin MA, Farlenkov AS, Ananyev MV. Effect of Proton Uptake on the Structure of Energy Levels in the Band-Gap of Sr-doped LaScO3: Diffuse Reflectance Spectroscopy and Coherent Potential Approximation Calculations. Phys Chem Chem Phys. 2019;21:7989–7995. doi:10.1039/C9CP00539K

Santosh KC, Longo RC, Xiong K, Cho K. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ionics. 2014;261:100–105. doi:10.1016/j.ssi.2014.04.021

Kubelka P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J Opt Soc Am. 1948;38:448–457. doi:10.1364/josa.38.000448

Sadykov AF, Gerashchenko AP, Piskunov YuV, Ogloblichev VV, Smol’nikov AG, Verkhovskii SV, Yakubovskii AYu, Tishchenko EA, Bush AA. Magnetic structure of low-dimensional LiCu2O2 multiferroic according to 63,65Cu and 7Li NMR studies. J Exp Theor Phys. 2012;115:666–672. doi:10.1134/S1063776112090105

Rettenwander D, Redhammer G, Preishuber-Pflügl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff MM, Wilkening M, Fleig J, Amthauer G. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes. Chem Mater. 2016; 28(7):2384–2392. doi:10.1021/acs.chemmater.6b00579

Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3(1):37–46. doi:10.1016/0025-5408(68)90023-8

Yifeng G, Liang X, Xinqi L, Jiang X. Electronic Structure and Electrochemical Properties of Garnet Type Li7La3Zr2O12 Solid Electrolytes Doped with Ta and Nb. Int J Electrochem Sci. 2022;17:220316. doi:10.20964/2022.03.03

Thompson T, Yu S, Williams L, Schmidt RD, Garcia-Mendez R, Wolfenstine J, Allen JL, Kioupakis E, Siegel DJ, Sakamoto J. Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12. ACS Energy Lett. 2017;2:462–468. doi:10.1021/acsenergylett.6b00593

Tan J, Tiwari A. Characterization of Li7La3Zr2O12 Thin Films Prepared by Pulsed Laser Deposition. MRS Online Pros Library. 2012;1471:37–42. doi:10.1557/opl.2012.1266

Lapina OB, Khabibulin DF, Romanenko KV, Gan Z, Zuev MG, Krasil’nikov VN, Fedorov VE. 93Nb NMR chemical shift scale for niobia systems. Solid State Nucl Magn Reson. 2005;28:204–224. doi:10.1016/j.ssnmr.2005.09.003

Squires AG, Scanlon DO, Morgan BJ. Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12. Chem. Mater. 2020;32:1876−1886. doi:10.1021/acs.chemmater.9b04319




DOI: https://doi.org/10.15826/chimtech.2024.11.2.07

Copyright (c) 2024 Maxim I. Vlasov, Evgenii A. Surzhikov, Alexander Yu. Germov, Evgeniya A. Il'ina, Ilya A. Weinstein

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International