Cover Image

Comparison of the HDS DBT reaction using bulk and supported catalysts

Polina P. Mukhacheva, Yuliya V. Vatutina, Ksenia A. Nadeina, Sergey V. Budukva, Maxim A. Panafidin, Vera P. Pakharukova, Mikhail V. Parfenov, Evgeny Yu. Gerasimov, Oleg V. Klimov, Aleksandr S. Noskov

Abstract


The paper describes in detail the procedure for the preparation of a granular bulk NiMoW catalyst and a supported reference NiMo/Al2Ocatalyst. Mention is made of investigations of the supported and bulk catalysts by various physico-chemical methods (nitrogen adsorption-desorption method, X-ray photoelectron spectroscopy, TPD-NH3, HRTEM and X-ray diffraction analysis). The experiments to estimate catalytic activity and compare rate constant of hydrodesulfurization of dibenzothiophene using both catalysts have been carried out. It is shown that textural properties of the catalysts significantly differ. The supported catalyst has more developed specific surface area and pore volume than the bulk catalyst. TPD-NH3 showed an increased acidity of the supported catalyst in comparison the bulk catalyst. It is shown by the X-ray photoelectron spectroscopy method that in both samples Mo on the surface is present exclusively in the form of Mo4+ ion. However, the bulk catalyst differs from the supported catalyst in that it contains a larger amount of Ni as part of the active NiMo(W)S phase. The catalytic activity tests demonstrated that the bulk catalyst is more active at 240, 250 and 260°C, it is discovered that the rate constant in hydrodesulfurization of dibenzothiophene for the bulk NiMoW catalyst is twice higher at 240ºC than that of the supported NiMo/Al2O3 catalyst.

Keywords


bulk catalyst; supported catalyst; hydrodesulphurization; dibenzothiophene; rate constant

Full Text:

PDF

References


Liu J-X, Liu X-Q, Yan R-X, Jia L-F, Cheng H-F, Liu H, et al. Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4,6-DMDBT. Pet Sci. 2023;20(2):1231–1237. doi:10.1016/j.petsci.2022.09.023

Okamoto Y, Breysse M, Dhar GM, Song C. Effect of support in hydrotreating catalysis for ultra clean fuels. Catal Today. 2003;86(1–4):1–3. doi:10.1016/S0920-5861(03)00414-0

Zhu J, Liu J, Zhu J, Lu S, Yan R, Cheng K, et al. 3D Printing Technique Fortifies the Ultradeep Hydrodesulfurization Process of Diesel: A Journey of NiMo/Al2O3-MMT. Inorg Chem. 2023;62(49):20050–20061. doi:10.1021/acs.inorgchem.3c02839

Plantenga FL, Cerfontain R, Eijsbouts S, et al. “NEBULA”: A hydroprocessing catalyst with breakthrough activity. Stud Surf Sci Catal. 2003;145:407–410. doi:10.1016/S0167-2991(03)80246-X

Eijsbouts S, Plantenga F, Leliveld B, Inoue Y, Fujita K. STARS and NEBULA – New Generations of Hydroprocessing Catalysts for the Production of Ultra Low Sulfur Diesel. Prepr Symp - Am Chem Soc, Div Fuel Chem. 2003;48(2):494–495.

Licea YE, Grau-Crespo R, Palacio LA, Faro AC. Unsupported trimetallic Ni(Co)-Mo-W sulphide catalysts prepared from mixed oxides: Characterisation and catalytic tests for simultaneous tetralin HDA and dibenzothiophene HDS reactions. Catal Today. 2017;292:84–96. doi:10.1016/j.cattod.2016.11.031

Soled SL, Miseo S, Eijsbouts S, Plantenga FL. inventors; ExxonMobil Technology and Engineering Co, assignee. Bulk bimetallic catalysts, method of making bulk bimetallic catalysts and hydroprocessing using bulk bimetallic catalysts. United States patent US7648941B2. 2006.

Kokliukhin A. Bulk and Supported Mixed (Ni)MoW Sulfide Catalsyts Based on Mixed H4SiMonW12-NO40 Keggin Heteropolyacids for Deep Hydrotreatment. Co-tutelle thesis Lille University/Samara State Technical University; 2021.

Voorhoeve RJH, Stuiver JCM. Kinetics of hydrogenation on supported and bulk nickel-tungsten sulfide catalysts. J Catal. 1971;23(2):228–235. doi:10.1016/0021-9517(71)90044-3

Arias S, Licea YE, Soares D, Eon JG, Palacio LA, Faro AC. Mixed NiMo, NiW and NiMoW sulfides obtained from layered double hydroxides as catalysts in simultaneous HDA and HDS reactions. Catal Today. 2017;296:187–196. doi:10.1016/j.cattod.2017.04.004

Yi Y, Zhang B, Jin X, Wang L, Williams CT, Xiong G, et al. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts. J Mol Catal A Chem. 2011;351:120–127. doi:10.1016/j.molcata.2011.09.024

Wang C, Wu Z, Tang C, Li L, Wang D. The effect of nickel content on the hydrodeoxygenation of 4-methylphenol over unsupported NiMoW sulfide catalysts. Catal Commun. 2013;32:76–80. doi:10.1016/j.catcom.2012.11.031

Nadeina KA, Budukva SV, Vatutina YV, et al. Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst. Inorganics. 2023;11:89. doi:10.3390/inorganics11020089

Nadeina KA, Budukva SV, Vatutina YV, et al. Unsupported Ni—Mo—W Hydrotreating Catalyst: Influence of the Atomic Ratio of Active Metals on the HDS and HDN Activity. Catalysts. 2022;12:1671. doi:10.3390/catal12121671

Eijsbouts S, Mayo S, Fujita K. Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Appl Catal A-general. 2007;322:58–66. doi:10.1016/j.apcata.2007.01.008

Yan R, Liu X, Liu J, Zhang L, Zhou S, Jia L, et al. Modulating the active phase structure of NiMo/Al2O3 by La modification for ultra-deep hydrodesulfurization of diesel. AIChE J. 2023;69(2):1–14. doi:10.1002/aic.17873

Vatutina Y V., Nadeina KA, Klimov O V., Kazakov MO, Danilova IG, Cherepanova S V., et al. Peptization of alumina by ammonia to adjust catalytic properties of NiMo/B-Al2O3 hydrotreating catalysts. Catal Today. 2021;375:377–392. doi:10.1016/j.cattod.2020.03.046

Nadeina KA, Vatutina YV, Mukhacheva PP, Krestyaninova V, Saiko A V, Bykova ES, et al. Influence of the order of the catalysts in the stacked bed of VGO hydrotreating catalysts. Fuel. 2021;306:121672. doi:10.1016/j.fuel.2021.121672

Mukhacheva PP, Vatutina YV, Mik IA, et al. Testing conditions for CoMo HDS catalyst in the kinetic region: integrated approach using the math calculations and catalytic experiments. Chim Techno Acta. 2023;10(2):202310208:1–9. doi:10.15826/chimtech.2023.10.2.08

Kaluža L, Gulková D, Šolcová O, Žilková N, Čejka J. Hydrotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni. Appl Catal A Gen. 2008;351(1):93–101. doi:10.1016/j.apcata.2008.09.002

Danilevich V V., Klimov O V., Nadeina KA, et al. Novel eco-friendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite. Superlattices Microstruct. 2018;120:148–160. doi:10.1016/j.spmi.2018.05.025

Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992). Google Sch. Published online 2002:128.

Thommes M, Kaneko K, Neimark A V., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9-10):1051–1069. doi:10.1515/pac-2014-1117

Vosooghi N, Askari S, Rashidzadeh M, Sadighi S. Promotion of the acidity and textural properties of NiMo/γ-Al2O3 catalyst by applying fluorine, boron and phosphorus in hydrodesulfurization of diesel fuel. J Mol Struct. 2022;1270:133911. doi:10.1016/j.molstruc.2022.133911.

Klimov O V, Vatutina Y V, Nadeina KA, Kazakov MO, Gerasimov EY, Prosvirin IP, et al. CoMoB/Al2O3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution. Catal Today. 2017. doi:10.1016/j.cattod.2017.07.004

Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H. Characterization and hydrodesulfurization activity of CoMo catalysts supported on boron-doped sol–gel alumina. Appl Catal A Gen. 2006;315:18–28. doi:10.1016/j.apcata.2006.08.034

Zhou W, Wei Q, Zhou Y, Liu M, Ding S, Yang Q. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Appl Catal B Environ. 2018;238:212–24. doi:10.1016/j.apcatb.2018.07.042

Xiao C, Zou Y, Liu Z, Li D, Kong X, Gao D, et al. Monodisperse dendritic micro-mesoporous composite self-assembled with tiny TS-1 seeds as efficient catalysts for hydrodesulfurization of dibenzothiophenes. Fuel. 2024;361:130644. doi:10.1016/j.fuel.2023.130644

Wang HW, Skeldon P, Thompson GE. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf Coatings Technol. 1997;91:200–207. doi:10.1016/S0257-8972(96)03186-6

Qiu L, Xu G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts. Appl Surf Sci. 2010;256(11):3413–3417. doi:10.1016/j.apsusc.2009.12.043

Gandubert AD, Legens C, Guillaume D, Rebours S, Payen E. X-ray Photoelectron Spectroscopy Surface Quantification of Sulfided CoMoP Catalysts Relation Between Activity and Promoted Sites Part I : Influence of the Co / Mo Ratio. 2007;62(1):79–89. doi:10.2516/ogst

Lorenz M, Schulze M. XPS analysis of electrochemically oxidized nickel surfaces. J Anal Chem. 1999;365:154–157. doi:10.1007/s002160051463

Ben Tayeb K, Lamonier C, Lancelot C, et al. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation. Catal Today. 2010;150(3):207–212. doi:10.1016/j.cattod.2009.07.094

Rodriguez-Castellon E, Jiménez-López A, Eliche-Quesada D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel. 2008;87:1195–1206. doi:10.1016/j.fuel.2007.07.020

Zhang H, Han L, Duan A, et al. Synthesis of micro-mesoporous materials ZSM-5/FDU-12 and the performance of dibenzothiophene hydrodesulfurization. RSC Adv. 2017;7(45):28038–28047. doi:10.1039/c7ra03679e

Wang C, Zan X, wu Z, Wang Z, Chaoyun T, Zhou P. Effect of W addition on the hydrodeoxygenation of 4-methylphenol over unsupported NiMo sulfide catalysts. Appl Catal A Gen. 2014;476:61–67. doi:10.1016/j.apcata.2014.02.010

Kazakova MA, Kuznetsov VL, Bokova-Sirosh SN, et al. Fe–Mo and Co–Mo Catalysts with Varying Composition for Multi-Walled Carbon Nanotube Growth. Phys status solidi. 2018;255(1):1700260. doi:10.1002/pssb.201700260

Klimov OV, Nadeina KA, Vatutina Y V., et al. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catal Today. 2018;307:73–83. doi:10.1016/J.CATTOD.2017.02.032

Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN). Google Sch. Published online 1992:128.

Sun H, Sun H, Zhang X, Yu Q, Zeng P, Guo Q, et al. Effect of Divalent Tin on the SnSAPO-5 Molecular Sieve and Its Modulation to Alumina Support To Form a Highly Efficient NiW Catalyst for Deep Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. ACS Catal. 2019;9(8):6613–6623. doi:10.1021/acscatal.9b01668

Sun H, Li L, Zhang H, Yang H, Yang T, Shu M, et al. Effect of Zirconium modified Y zeolite via in situ synthesis and its regulation on the formation of excellent NiW catalyst for ultra-deep hydrodesulfurization of 4,6-DMDBT. Chem Eng J. 2023;478:147514. doi:10.1016/j.cej.2023.147514

Pakharukova VP, Yatsenko DA, Gerasimov EY, Vlasova E, Bukhtiyarova GA, Tsybulya S V. Total Scattering Debye Function Analysis: Effective Approach for Structural Studies of Supported MoS2-Based Hydrotreating Catalysts. Ind Eng Chem Res. 2020;59(23):10914–10922. doi:10.1021/acs.iecr.0c01254




DOI: https://doi.org/10.15826/chimtech.2024.11.2.06

Copyright (c) 2024 Polina P. Mukhacheva, Yuliya V. Vatutina, Ksenia A. Nadeina, Sergey V. Budukva, Maxim A. Panafidin, Vera P. Pakharukova, Oleg V. Klimov, Aleksandr S. Noskov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International