CNT thin films based on epoxy mixtures: fabrication, electrical characteristics
Abstract
Keywords
Full Text:
PDFReferences
Soni SK, Thomas B, Kar VR. A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications. Mater Today Commun. 2020;25:101546. doi:10.1016/j.mtcomm.2020.101546
Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B Adv. 2021;268:115095. doi:10.1016/j.mseb.2021.115095
Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Shulaker MM. Modern microprocessor built from complementary carbon nanotube transistors. Nature. 2019;572(7771):595–602. doi:10.1038/s41586-019-1493-8
Goh PS, Ismail AF, Ng BC. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos Part A Appl S. 2014;56:103–126. doi:10.1016/j.compositesa.2013.10.001
Salah LS, Ouslimani N, Bousba D, Huynen I, Danlée Y, Aksas H. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J Nanomater. 2021:1–31. doi:10.1155/2021/4972770
Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Wei F. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium‐sulfur batteries. Adv Func Mater. 2014;24(19):2772–2781. doi:10.1007/s10853-015-9440-z
Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A Appl S. 2010;41(10):1345–1367. doi:10.1016/j.compositesa.2010.07.003
Kausar A, Rafique I, Muhammad B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol. 2016;55(11):1167–1191. doi:10.1080/03602559.2016.1163588
Venkataraman A, Amadi EV, Chen Y, Papadopoulos C. Carbon nanotube assembly and integration for applications. Nanoscale Res Lett. 2019;14(1):1–47. doi:10.1186/s11671-019-3046-3
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018;8(49):28048–28085. doi:10.1039/C8RA04205E
Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Khalina A. Mechanical performance and applications of CNTs reinforced polymer composites – A review. Nanomaterials Basel. 2021;11(9):2186. doi:10.3390/nano11092186
Shoukat R, Khan MI. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst Technol. 2021;1–10. doi:10.1007/s00542-021-05211-6
Wu X, Mu F, Zhao H. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J Mate Sci Technol. 2020;55:16–34. doi:10.1016/j.jmst.2019.05.063
Cho W, Schulz M, Shanov V. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon. 2014;72:264–273. doi:10.1016/j.carbon.2014.01.074
Ding D, Wang J, Yu X, Xiao G, Feng C, Xu W, He G. Dispersing of functionalized CNTs in Si–O–C ceramics and electromagnetic wave absorbing and mechanical properties of CNTs/Si–O–C nanocomposites. Ceram Int. 2020;46(4):5407–5419. doi:10.1016/j.ceramint.2019.10.297
Mohd Nurazzi N, Asyraf MM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee CL, Aisyah HA, Norrrahim MNF, Ilyas RA, Harussani MM, Ishak MR, Sapuan SM. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers Basel. 2021;13(7):1047. doi:10.3390/polym13071047
Ramachandran K, Boopalan V, Bear JC, Subramani R. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review. J Mater Sci. 2022;57(6):3923–3953. doi:10.1007/s10853-021-06760-x
Temizel-Sekeryan S, Wu F, Hicks AL. Global scale life cycle environmental impacts of single-and multi-walled carbon nanotube synthesis processes. Int J LCA. 2021;26:656–672. doi:10.1007/s11367-020-01862-1
Norizan MN, Moklis MH, Demon SZN, Halim NA, Samsuri A, Mohamad IS, Abdullah N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020;10(71):43704–43732. doi:10.1039/D0RA09438B
Ferrier DC, Honeychurch, KC. Carbon nanotube (CNT)-based biosensors. Biosensors. 2021;11(12):486. doi:10.3390/bios11120486
Wan H, Cao Y, Lo LW, Zhao J, Sepulveda N, Wang C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano. 2020;14(8):10402–10412. doi:10.1039/C9TA12494B
Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon. 2006;44(10):1898–1905. doi:10.1016/j.carbon.2006.02.026
Dehrooyeh S, Vaseghi M, Sohrabian M, Sameezadeh M. Glass fiber/Carbon nanotube/Epoxy hybrid composites: Achieving superior mechanical properties. Mech Mater. 2021;161:104025. doi:10.1016/j.mechmat.2021.104025
Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Design. 2016;95:1–8. doi:10.1016/j.matdes.2016.01.07
Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Rubi Y, Kingston CT, Johnston A, Simard B. Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Compos B Eng. 2015;69:87–93. doi:10.1016/j.compositesb.2014.09.022
Aradhana R, Mohanty S, Nayak SK. A review on epoxy-based electrically conductive adhesives. IJAA. 2020;99:102596. doi:10.1016/j.ijadhadh.2020.102596
Banerjee P, Bhattacharjee Y, Bose S. Lightweight epoxy-based composites for EMI shielding applications. J Electron Mater. 2020;49:1702–1720. doi:10.1007/s11664-019-07687-5
Butt HA, Lomov SV, Akhatov IS, Abaimov SG. Self-diagnostic carbon nanocomposites manufactured from industrial epoxy masterbatches. Compos Struct. 2021;259:113244. doi:10.1016/j.compstruct.2020.113244
Butt HA, Owais M, Sulimov A, Ostrizhiniy D, Lomov SV, Akhatov IS, Popov YA. CNT/Epoxy-Masterbatch Based Nanocomposites: Thermal and Electrical Properties. In: Proceedings of the Conference “IEEE 21st International Conference on Nanotechnology (NANO)”. 2021 July 28–30; Montreal, Canada. p. 417–420. doi:10.1109/NANO51122.2021.9514322
Jafarypouria M, Mahato B, Abaimov SG. Separating Curing and Temperature Effects on the Temperature Coefficient of Resistance for a Single-Walled Carbon Nanotube Nanocomposite. Polymers Basel. 2023;15(2):433. doi:10.3390/polym15020433
Salikhov RB, Zilberg RA, Mullagaliev IN, Salikhov TR, Teres YB. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers. Mendeleev Commun. 2022;32(4):520–522. doi:10.1016/j.mencom.2022.07.029
Khuzin AA, Tuktarov AR, Venidiktova OV, Barachevsky VA, Mullagaliev IN, Salikhov TR, SalikhovRB, Khalilov LM, Khuzina LL, Dzhemilev UM. Hybrid molecules based on fullerene C60 and dithienylethenes: synthesis and photochromic properties, optically controlled organic field-effect transistors. Photochem Photobiol. 2022;98(4):815–822. doi:10.1111/php.13539
Tuktarov AR, Salikhov RB, Khuzin AA, Safargalin IN, Mullagaliev IN, Venidiktova OV, Valova TM, Barachevsky VA, Dzhemilev UM. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films. Mendeleev Commun. 2019;29(2):160–162. doi:10.1016/j.mencom.2019.03.014
Tuktarov AR, Salikhov RB, Khuzin AA, Popod'ko NR, Safargalin IN, Mullagaliev IN, Dzhemilev UM. Photocontrolled organic field effect transistors based on the fullerene C60 and spiropyran hybrid molecule. RSC Adv. 2019;9(13):7505–7508. doi:10.1039/C9RA00939F
Salikhov RB, Lachinov AN, Bunakov AA. Charge transfer in thin polymer films of polyarylenephthalides. Phys Solid State. 2007;49(1):185–188. doi:10.1134/S1063783407010295
Salikhov RB, Lachinov AN, Rakhmeyev RG. Electrical properties of heterostructure Si poly (diphenylenephthalide) Cu. J Appl Phys. 2007;101(5):053706. doi:10.1063/1.2450679
Zang X, Zhou Q, Chang J, Liu Y, Lin L. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng. 2015;132:192–206. doi:10.1016/j.mee.2014.10.023
Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Sci. 1997;277(5330):1287–1289. doi:10.1126/science.277.5330.1287
Sandoval S, Kierkowicz M, Pach E, Ballesteros B, Tobias G. Determination of the length of single-walled carbon nanotubes by scanning electron microscopy. MethodsX. 2018;5:1465–1472. doi:10.1016/j.mex.2018.11.004
Huang X, Farra R, Schlögl R, Willinger MG. Growth and termination dynamics of multiwalled carbon nanotubes at near ambient pressure: an in situ transmission electron microscopy study. Nano Lett. 2019:19(8):5380–5387. doi:10.1021/acs.nanolett.9b01888
Wu Y, Lin X, Zhang M. Carbon nanotubes for thin film transistor: fabrication, properties, and applications. J Nanomater. 2013:64–64. doi:10.1155/2013/627215
Zhao J, Gao Y, Gu W, Wang C, Lin J, Chen Z, Cui Z. Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J Mater Chem. 2012;22(38):20747–20753. doi:10.1039/C2JM34598F
Salikhov RB, Abdrakhmanov VK, Yumalin TT. Experience of Using Bluetooth Low Energy to Develop a Sensor Data Exchange System Based on the NRF52832 Microcontroller. In: Proceedings of the Conference “2021 International Ural Conference on Electrical Power Engineering (UralCon)”. 2021 Sep 24–26; Magnitogorsk, Russia. p. 229–233. doi:10.1109/UralCon52005.2021.9559492
Bandaru PR. Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol. 2007;7(4–5):1239–1267. doi:10.1166/jnn.2007.307
Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009;69(10):1486–1498. doi:10.1016/j.compscitech.2008.06.018
Salikhov TR, Abdrakhmanov VK, Yumalin TT. Application of Organic Sensors in Wireless Environmental Monitoring Systems. In Proceedings of the Conference “2021 International Conference on Electrotechnical Complexes and Systems (ICOECS)”. 2021 Nov 16–18; Ufa, Russia. p. 500–503. doi:10.1109/ICOECS52783.2021.9657269
Mustafin AG, Latypova LR, Andriianova AN, Salikhov SM, Usmanova GS, Mullagaliev IN, Salikhov RB. Polymerization of new aniline derivatives: synthesis, characterization and application as sensors. RSC Adv. 2021;11(34):21006–21016. doi:10.1039/D1RA02474D
Gardea F, Lagoudas DC. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos Part B Eng. 2014;56:611–620. doi:10.1016/j.compositesb.2013.08.032
Pejcic B. Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Talanta. 2011;85(3):1648–1657. doi:10.1016/j.talanta.2011.06.062
Mondal RK. Novel hybrid nanocarbons/poly (dimethylsiloxane) composites based chemiresistors for real time detection of hazardous aromatic hydrocarbons. Carbon. 2016;100:42–51. doi:10.1016/j.carbon.2015.11.055
Cooper JS. Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. J Nanopart Res. 2014;16:1–13. doi:10.1007/s11051-013-2173-5
DOI: https://doi.org/10.15826/chimtech.2024.11.2.05
Copyright (c) 2024 Timur Yumalin, Timur Salikhov, Biltu Mahato, Alexey Shiverskii, Sergey Abaimov, Renat Salikhov
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International