Cover Image

Features of forming a low-temperature cubic Li7La3Zr2O12 film by tape casting

Efim Lyalin, Larisa Pershina, Evgeniya Il’ina, Konstantin Druzhinin, Semen Belyakov

Abstract


Currently, interest to lithium and lithium-ion all-solid-state power sources is rapidly growing all over the world. However, several issues should be addressed before all-solid-state batteries production: high resistance values of the solid electrolyte membrane and poor contact between electrolyte and electrode materials. The transition to thin-film technologies is one of the promising ways to solve these problems. Tape casting can be proposed to obtain thin-film solid electrolytes. In this research, the features of the structure formation, morphology and lithium-ion conductivity of Li7La3Zr2O12 films were investigated. Li7La3Zr2O12 films with the thickness of 35 µm were obtained by tape casting on Ni substrate. The influence of organic components’ content on homogeneous coatings formation was established. Heat treatment conditions for dried films were chosen based on differential scanning calorimetry and optical dilatometry. Phase change from tetragonal to low-temperature cubic modification occurs after annealing the Li7La3Zr2O12 films at 700 °C and higher. The annealed Li7La3Zr2O12 films have developed surface, which can lead to improved contact between the solid electrolyte and an electrode in an electrochemical cell. Li7La3Zr2O12 films annealed at 800 °C have the highest lithium-ion conductivity values (2.5·10–7 and 1.5·10–5 S·cm–1 at 90 and 215 °С, respectively). The technology of Li7La3Zr2O12 films formation with the thickness of ~23 µm by tape casting was developed.

Keywords


Li7La3Zr2O12; lithium-ion conductivity; film; tape casting; all-solid-state battery

Full Text:

PDF

References


Kong L, Wang L, Zhu J, Bian J, Xia W, Zhao R, Lin H, Zhao Y. Configuring solid-state batteries to power electric vehicles: A deliberation on technology, chemistry and energy. Chem Commun. 2021;57:12587–12594. doi:10.1039/D1CC04368D

Bates AM, Preger Y, Torres-Castro L, Harrison KL, Harris SJ, Hewson J. Are solid-state batteries safer than lithium-ion batteries? Joule. 2022;6:742–55. doi:10.1016/j.joule.2022.02.007

Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci. 2021;14:12–36. doi:10.1039/D0EE02241A

Kokal I, Somer M, Notten PHL. Sol-gel synthesis and lithi-um ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ion. 2011;185:42–46. doi:10.1016/j.ssi.2011.01.002

Kuhn A, Narayanan S, Spencer L, Goward G. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectros-copy. Phys Rev B. 2011;83:09430201. doi:10.1103/PhysRevB.83.094302

Toda S, Ishiguro K, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Imanishi N. Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12. Solid State Ion. 2013;233:102–106. doi:10.1016/j.ssi.2012.12.007

Larraz G, Orera A, Sanjuan ML. Cubic phases of garnet type Li7La3Zr2O12: The role of hydration. J Mater Chem A. 2013;1:11419–11428. doi:10.1039/C3TA11996C

Xie H, Li Y, Goodenough JB. Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure. Mater Res Bull. 2012;47:1229–1232. doi:10.1016/j.materresbull.2012.01.027

Campanella D, Belanger D, Paolella A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ce-ramic perspectives for all solid lithium metal batteries. J Power Source. 2021;482:228949. doi:10.1016/j.jpowsour.2020.228949

Zheng F, Kotobuki M, Song S, Lai MO, Lu L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Pow-er Source. 2018;389:198–213. doi:10.1016/j.jpowsour.2018.04.022

Yaroslavtsev AB. Solid electrolytes: Main prospects of re-search and development. Rus Chem Rev. 2016;85:1255–1276. doi:10.1070/RCR4634

Dunushkina LA. Introduction to methods of obtaining film electrolytes for solid oxide fuel cells: monograph. Yekate-rinburg: UrB RAS; 2015. 128 p. Russian.

Tan J, Tiwari A. Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett. 2012;1(6):57. doi:10.1149/2.013206ssl

Tadanaga K, Egawa H, Hayashi A, Tatsumisago M, Mosa J, Aparicio M, Duran A. Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J Pow-er Sources. 2015;273:844–847. doi:10.1016/j.jpowsour.2014.09.164

Bitzer M, Gestel TV, Uhlenbruck S, Buchkremer PH. Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films. 2016;615:128–134. doi:10.1016/j.tsf.2016.07.010

Lyalin E, Il’ina E, Kalinina E, Antonov B, Pankratov A, Pereverzev D. Electrophoretic deposition and characteriza-tion of thin-film membranes Li7La3Zr2O12. Membranes. 2023;13(5):468. doi:10.3390/membranes13050468

Yi E, Wang W, Kieffer J, Richard M, Key L. Parameters gov-erning the densification of cubic-Li7La3Zr2O12 Li+ conduc-tors. J Power Sources. 2017;352:156–164. doi:10.1016/j.jpowsour.2017.03.126

Hanc E, Zając W, Lu L, Binggong Y, Kotobuki M, Ziąbka M, Molenda J. On fabrication procedures of Li-ion conducting garnets. J Solid State Chem. 2017;248:51–60. doi:10.1016/j.jssc.2017.01.017

Hitz GT, Dennis W. McOwen, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Tanner RH, Hu L, Wachsma ED. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today. 2019;22:50–57. doi:10.1016/j.mattod.2018.04.004

Ye R, Tsai CL, Ihrig M, Sevinc S, Rosen M, Dashjav E, Sohn YJ, Figgemeier E, Finsterbusch M. Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries. Green Chem. 2020;22(15):4952–4961. doi:10.1039/d0gc01009j

Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: Synthesis, structure, Li+ con-ductivity, Li+ dynamics and applications. Prog Mater Sci. 2017;88: 325–411. doi:10.1016/j.pmatsci.2017.04.007

Meshcherskikh AN, Khaliullina ASh, Dunyushkina LA, in-ventors; Private Institution for the scientific development of the nuclear industry "Science and Innovation", assignee. The composition of the slurry for the production of porous ceramics. Russian Federation patent RU 2021139410. 2021 Dec 12. Russian.

Murugan R, Thangadurai V, Weppner W, Angew. Fast lithi-um ion conduction in garnet-type Li7La3Zr2O12. Chem Int Ed. 2007;46:7778–7781. doi:10.1002/anie.200701144

Kotobuki M, Munakata H, Kanamura K, Sato Y, Yoshida T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using li metal anode. J Electrochem Soc. 2010;157:1076–1079. doi:10.1149/1.3474232

Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the gar-net-related type structure. J Solid State Chem. 2009;182:2046–2052. doi:10.1016/j.jssc.2009.05.020

Il’Ina EA, Andreev OL, Antonov BD, Batalov NN. Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. J Power Sources. 2012;201:169–173. doi:10.1016/j.jpowsour.2011.10.108

Richard EM, Eric RT. Tape Casting: Theory and Practice. Wiley. 2000. 298 p.

GOST 9439-85 Polyvinyl Butyral. Technical conditions. – Moscow: Publishing House of Standards. 1985. 38 p.

Lazanas AC, Prodromidis MI. Electrochemical Impedance Spectroscopy - A Tutorial. ACS Measurement Science Au. 2023;3:162–193. doi:10.1021/acsmeasuresciau.2c00070

Shen H, Yi E, Heywood S, Parkinson DY, Chen G, Tamura N, et al. Scalable freeze-tape-casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes. ACS Appl Mater Interfaces. 2019;12:3494–3501. doi:10.1021/acsami.9b11780

Fu Z, Zhang L, Gritton JE, Godbey G, Hamann T, Gong Y, et al. Probing the mechanical properties of a doped Li7La3Zr2O12 garnet thin electrolyte for solid-state batteries. ACS Appl Mater Interfaces. 2020;12:24693–24700. doi:10.1021/acsami.0c01681




DOI: https://doi.org/10.15826/chimtech.2023.10.4.09

Copyright (c) 2023 Efim Lyalin, Larisa Pershina, Evgeniya Il’ina, Konstantin Druzhinin, Semen Belyakov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International