Cover Image

Study on methylene blue adsorption using cashew nut shell-based activated carbon

Hai D. Tran, Dinh Quan Nguyen

Abstract


Adsorption is a widely used technique for the treatment of wastewater containing dyes, which are pollutants that can have serious impacts on the aquatic ecosystems. In this work, activated carbon (AC) was prepared from cashew nut shell (CNS) and used to adsorb methylene blue (MB) from solution. The CNS AC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption isotherms. The adsorption behavior of MB on CNS AC was investigated by varying the initial solution pH, adsorbent dosage, and initial MB concentration. The results showed that the CNS AC was effective for MB removal, with an adsorption capacity of 24.8 mg/g. The adsorption nature of MB onto the CNS AC surface was explored by analyzing the experimental data using isotherm and kinetic models. The Freundlich and Dubinin-Radushkevich (D-R) isotherm models showed good agreement with the experimental adsorption equilibrium results. The mean adsorption energy was found to be 22.4 kJ/mol, indicating chemical adsorption. The adsorption of MB on the CNS AC followed pseudo-second-order kinetics. This study demonstrates the potential application of CNS AC for MB removal.

Keywords


dye removal; adsorption; activated carbon; isotherm; kinetics; bio-adsorbent

Full Text:

PDF

References


Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water. 2022;14(2):242. doi:10.3390/w14020242

Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3(2):275-290. doi:10.1016/j.biori.2019.09.001

Beya CL, Kanwugu ON, Ivantsova MN. Modern biotechnological methods in wastewater treatment: a review. Chimica Techno Acta. 2022;9(2S):202292S3. doi:10.15826/chimtech.2022.9.2.S3

Javaid R, Qazi UY. Catalytic oxidation process for the degradation of synthetic dyes: An overview. Int J Environ Res Public Health. 2019;16(11):2066. doi:10.3390/ijerph16112066

Nguyet PN, Watari T, Hirakata Y, Hatamoto M, Yamaguchi T. Adsorption and biodegradation removal of methylene blue in a down-flow hanging filter reactor incorporating natural adsorbent. Environ Technol. 2021;42(3):410-418. doi:10.1080/09593330.2019.1629636

Nachiyar CV, Rakshi A, Sandhya S, Jebasta NBD, Nellore J. Developments in treatment technologies of dye-containing effluent: A review. Case Stud Chem Environ Eng. 2023;7:100339. doi:10.1016/j.cscee.2023.100339

Aragaw TA, Bogale FM. Biomass-based adsorbents for removal of dyes from wastewater: a review. Front Environ Sci. 2021;9:764958. doi:10.3389/fenvs.2021.764958

Yardımcı B, Kanmaz N. An effective-green strategy of methylene blue adsorption: sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2. J Environ Chem Eng. 2023;11(3):110254. doi:10.1016/j.jece.2023.110254

Hızal J, Kanmaz N, Yılmazoğlu M. Adsorption efficiency of sulfonated poly (ether ether ketone)(sPEEK) as a novel low-cost polymeric adsorbent for cationic organic dyes removal from aqueous solution. J Mol Liq. 2021;322:114761. doi:10.1016/j.molliq.2020.114761

Nam NH, Anh KD, Truc LGT, Ha TA, Ha VTT. Pyrolysis of cashew nut shell: A parametric study. Vietnam J Chem. 2020;58(4):506-511. doi:10.1002/vjch.202000015

Subramaniam R, Ponnusamy SK. Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water Resour Ind. 2015;11:64-70. doi:10.1016/j.wri.2015.07.002

Thang NH, Khang DS, Hai TD, Nga DT, Tuan PD. Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Adv. 2021;11:26563-26570. doi:10.1039/D1RA04672A

Spagnoli AA, Giannakoudakis DA, Bashkova S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J Mol Liq. 2017;229:465471. doi:10.1016/j.molliq.2016.12.106

Kumar PS, Ramalingam S, Sathishkumar K. Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean J Chem Eng. 2011;28:149-155. doi:10.1007/S11814-010-0342-0

Samiyammal P, Kokila A, Pragasan LA, Rajagopal R, Sathya R, Ragupathy S, Krishnakumar M, Reddy VRM. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm. Environ Res. 2022;212:113497. doi:10.1016/j.envres.2022.113497

Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 2010;261(1–2):52-60. doi:10.1016/j.desal.2010.05.032

Geczo A, Giannakoudakis DA, Triantafyllidis K, Elshaer MR, Rodríguez-Aguado E, Bashkova S. Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons. Environ Sci Pollut Res. 2021;28:5896958982. doi:10.1007/s11356-019-07562-0

Kim MI, Bai BC. Effect of nitric acid treatment on the pitch properties and preparation of activated carbon. Carbon Lett. 2022;32:99-107. doi:10.1007/s42823-021-00256-z

Farnane M, Machrouhi A, Abdennouri M, Tounsadi H, Rais Z, Qourzal S, Barka N. Optimization of Carob shells biomass activation by nitric acid for heavy metals sequestration from contaminated water. Biointerface Res Appl Chem. 2021;12(5):5941-5952. doi:10.33263/briac125.59415952

Fillaeli A, Kristianingrum S, Siswani E, Fatimah S. Synthesis activated carbon of screw-pine leaves by HNO3 and its properties. In J Phys Conf Ser. 2019;012001. doi:10.1088/1742-6596/1156/1/012001

Neme I, Gonfa G, Masi C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon. 2022;8(12):e11940. doi:10.1016/j.heliyon.2022.e11940

Torres J, Nogueira F, Silva M, Lopes J, Tavares T, Ramalho T, Corrêa A. Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste. RSC Adv. 2017;7(27):16460-16466. doi:10.1039/C7RA01309D

Ma F, Ding S, Ren H, Liu Y. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv. 2019;9(5):2474-2483. doi:10.1039/C8RA09685F

Tsai J-H, Lee T-Y, Chiang H-L. Nitrogen adsorption and characteristics of iron, cobalt, and nickel oxides impregnated on SBA-15 mesoporous silica. Nanomater. 2023;13(6):1015. doi:10.3390/nano13061015

Kanmaz N, Buğdaycı M, Demirçivi P. Investigation on structural and adsorptive features of BaO modified zeolite powders prepared by ball milling technique: Removal of tetracycline and various organic contaminants. Microporous Mesoporous Mater. 2023;354:112566. doi:10.1016/j.micromeso.2023.112566

Li X, Qiu J, Hu Y, Ren X, He L, Zhao N, Ye T, Zhao X. Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties. Adsorp Sci Technol. 2020;38(9–10):450-463. doi:10.1177/0263617420946

Kanmaz N, Buğdaycı M, Demirçivi P. Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes. J Mol Liq. 2023;378:121643. doi:10.1016/j.molliq.2023.121643

Moyo M, Nyamhere G, Sebata E, Guyo U. Kinetic and equilibrium modelling of lead sorption from aqueous solution by activated carbon from goat dung. Desalin Water Treat. 2016;57(2):765-775. doi:10.1080/19443994.2014.968217

Cuhadaroglu D, Uygun OA. Production and characterization of activated carbon from a bituminous coal by chemical activation. Afr J Biotechnol. 2008;7(20):3703-3710. English. Available from: https://www.ajol.info/index.php/ajb/article/view/59416, Accessed on 20 Oct 2008.

Ghaffar A, Younis MN. Interaction and thermodynamics of methylene blue adsorption on oxidized multi-walled carbon nanotubes. Green Process Synth. 2015;4(3):209-217. doi:10.1515/gps-2015-0009

Sáenz-Alanís CA, García-Reyes RB, Soto-Regalado E, García-González A. Phenol and methylene blue adsorption on heat-treated activated carbon: Characterization, kinetics, and equilibrium studies. Adsorp Sci Technol. 2017;35(9–10):789-805. doi:10.1177/0263617416684517

Rabadanova A, Abdurakhmanov M, Gulakhmedov R, Shuaibov A, Selimov D, Sobola D, Částková K, Ramazanov S, Orudzhev F. Piezo-, photo-and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. Chimica Techno Acta. 2022;9(4):20229420. doi:10.15826/chimtech.2022.9.4.20

Hongo T, Moriura M, Hatada Y, Abiko H. Simultaneous methylene blue adsorption and pH neutralization of contaminated water by rice husk ash. ACS Omega. 2021;6(33):21604-21612. doi:10.1021/acsomega.1c02833

Zein R, Purnomo JS, Ramadhani P, Alif MF, Putri CN. Enhancing sorption capacity of methylene blue dye using solid waste of lemongrass biosorbent by modification method. Arab J Chem. 2023;16(2):104480. doi:10.1016/j.arabjc.2022.104480

Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, Zheng K, Wu Z. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. doi:10.1016/j.clay.2013.08.033

Amode JO, Santos JH, Md. Alam Z, Mirza AH, Mei CC. Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies. Int J Ind Chem. 2016;7:333-345. doi:10.1007/s40090-016-0085-9

Han R, Zou W, Yu W, Cheng S, Wang Y, Shi J. Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves. J Hazard Mater. 2007;141(1):156-162. doi:10.1016/j.jhazmat.2006.06.107

Mosoarca G, Vancea C, Popa S, Gheju M, Boran S. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci Rep. 2020;10:17676. doi:10.1038/s41598-020-74819-x

Kujawska J, Wasag H. Biochar: a low-cost adsorbent of methylene blue from aqueous solutions. In J Phy: Conf Ser. 2021 Nov 2326; Lublin, Poland - Lviv, Ukraine. 012002. doi:10.1088/1742-6596/1736/1/012002

Fito J, Abewaa M, Mengistu A, Angassa K, Ambaye AD, Moyo W, Nkambule T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci Rep. 2023;13:5427. doi:10.1038/s41598-023-32341-w

Al-Ghouti MA, Al-Absi RS. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep. 2020;10:15928. doi:10.1038/s41598-020-72996-3

Eren Z, Acar FN. Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination 2006;194(1–3):1-10. doi:10.1016/j.desal.2005.10.022

Etim U, Umoren S, Eduok U. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc. 2016;20:S67-S76. doi:10.1016/j.jscs.2012.09.014

Mousavi SA, Mahmoudi A, Amiri S, Darvishi P, Noori E. Methylene blue removal using grape leaves waste: optimization and modeling. Appl Water Sci. 2022;12:112. doi:10.1007/s13201-022-01648-w

Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. Surfactant adsorption isotherms: A review. ACS Omega. 2021;6(48):32342-32348. doi:10.1021/acsomega.1c04661

Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere. 2020;258:127279. doi:10.1016/j.chemosphere.2020.127279

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361-1403. doi:10.1021/ja02242a004

Freundlich H. Über die adsorption in lösungen. Z fur Phys Chem. 1907;57U(1):385-470. doi:10.1515/zpch-1907-5723

Banerjee S, Chattopadhyaya M. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 2017;10:S1629-S1638. doi:10.1016/j.arabjc.2013.06.005

Jia P, Tan H, Liu K, Gao W. Removal of methylene blue from aqueous solution by bone char. Appl Sci. 2018;8(10):1903. doi:10.3390/app8101903

Tahir S, Rauf N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 2006;63(11):1842-1848. doi:10.1016/j.chemosphere.2005.10.033

SenthilKumar P, Ramalingam S, Abhinaya R, Kirupha SD, Vidhyadevi T, Sivanesan S. Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc (II) ions onto cashew nut shell. Can J Chem Eng. 2012;90(4):973-982. doi:10.1002/cjce.20588

Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:122156. doi:10.1016/j.jhazmat.2020.122156

Chen B, Yue W, Zhao H, Long F, Cao Y, Pan X. Simultaneous capture of methyl orange and chromium (VI) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent. RSC Adv. 2019;9(9):4722-4734. doi:10.1039/C8RA08760A




DOI: https://doi.org/10.15826/chimtech.2023.10.4.01

Copyright (c) 2023 Hai D. Tran, Dinh Quan Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International