Novel co-doped protonic conductors BaLa1.9Sr0.1In1.95M0.05O6.925 with layered perovskite structure
Abstract
Active development of electrochemical devices such as proton-conducting fuel cells and electrolyzers should ensure sustainable environmental development. An electrolyte material of a hydrogen-powered electrochemical device must satisfy a number of requirements, including high proton conductivity. Layered perovskites are a promising class of proton-conducting electrolytes. The cationic co-doping method has been successfully applied to well-known proton conductors with the classical perovskite structure ABO3. However, the data on the application of this method to layered perovskites are limited. In this work, the bilayer perovskites BaLa1.9Sr0.1In1.95M0.05O6.925 (M = Mg2+, Ca2+) were obtained and investigated for the first time. Cationic co-doping increases oxygen-ion and proton conductivity values.
Keywords
Full Text:
PDFReferences
Zhang W, Hu YH. Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices. Energy Sci Eng. 2021;9:984–1011. doi:10.1002/ese3.886
Nayak AP, Sasmal A. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell. J Cleaner Product. 2023;386:135827. doi:10.1016/j.jclepro.2022.135827
Guo R, He T. High-entropy perovskite electrolyte for protonic ceramic fuel cells operating below 600 °C. ACS Mater Lett. 2022;4:1646–1652. doi:10.1021/acsmaterialslett.2c00542
Wang C, Li Z, Zhao S, Xia L, Zhu M, Han M, Ni M. Modelling of an integrated protonic ceramic electrolyzer cell (PCEC) for methanol synthesis. J Power Sources. 2023;559:232667. doi:10.1016/j.jpowsour.2023.232667
Ji HI, Lee JH, Son JW, Yoon KJ, Yang S, Kim BK. Protonic ceramic electrolysis cells for fuel production: A brief review. J Korean Ceram Soc. 2020;57:480–494. doi:10.1007/s43207-020-00059-4
Liu F, Ding D, Duan C. Protonic ceramic electrochemical cells for synthesizing sustainable chemicals and fuels. Adv Sci. 2023;10:2206478. doi:10.1002/advs.202206478
Kim D, Bae KT, Kim KJ, Im H-N, Jang S, Oh S, Lee SW, Shin TH, Lee KT. High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 2022;7:2393–2400. doi:10.1021/acsenergylett.2c01370
Tian H, Luo Z, Song Y, Zhou Y, Gong M, Li W, Shao Z, Liu M, Liu X. Protonic ceramic materials for clean and sustainable energy: Advantages and challenges. Int Mater Rev. 2022;0:1–29. doi:10.1080/09506608.2022.2068399
Corigliano O, Pagnotta L, Fragiacomo P. On the technology of solid oxide fuel cell (SOFC) energy systems for stationary power generation: A review. Sustain. 2022;14:15276. doi:10.3390/su142215276
Kumar SS, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022;8:13793–13813. doi:10.1016/j.egyr.2022.10.127
Huang L, Huang X, Yan J, Liu Y, Jiang H, Zhang H, Tang J, Liu Q. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. J Hazard Mater. 2023;442:130024. doi:10.1016/j.jhazmat.2022.130024
Tarasova N. Layered perovskites BaLnnInnO3n+1 (n = 1, 2) for electrochemical applications: A mini review. Membran. 2023;13:34. doi:10.3390/membranes13010034
Zvonareva IA, Medvedev DA. Proton-conducting barium stannate for high-temperature purposes: A brief review. J Eur Ceram Soc. 2023;43:198–207. doi:10.1016/j.jeurceramsoc.2022.10.049
Aminudin MA, Kamarudin SK, Lim BH, Majilan EH, Masdar MS, Shaari N. An overview: Current progress on hydrogen fuel cell vehicles. Int J Hydrog Energy. 2023;48:4371–4388. doi:10.1016/j.ijhydene.2022.10.156
Liu F, Fang L, Diercks D, Kazempoor P, Duan C. Rationally designed negative electrode for selective CO2-to-CO conversion in protonic ceramic electrochemical cells. Nano Energy. 2022;102:107722. doi:10.1016/j.nanoen.2022.107722
Liu F, Duan C. Direct-hydrocarbon proton-conducting solid oxide fuel cells. Sustain. 2021;13:4736. doi:10.3390/su13094736
Nayak AK, Sasmal A. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell. J Clean Prod. 2023;386:135827. doi:10.1016/j.jclepro.2022.135827
Qiao Z, Li S, Li Y, Xu N, Xiang K. Structure, mechanical properties, and thermal conductivity of BaZrO3 doped at the A-B site. Ceram Int. 2022;48;12529–12536. doi:10.1016/j.ceramint.2022.01.120
Guo R, Li D, Guan R, Kong D, Cui Z, Zhou Z, He T. Sn–Dy–Cu triply doped BaZr0.1Ce0.7Y0.2O3−δ: A chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells. ACS Sustain Chem Eng. 2022;10:5352–5362. doi:10.1021/acssuschemeng.2c00807
Gu Y, Luo G, Chen Z, Huo Y, Wu F. Enhanced chemical stability and electrochemical performance of BaCe0.8Y0.1Ni0.04Sm0.06O3–δ perovskite electrolytes as proton conductors. Ceram Int. 2022;48:10650–10658. doi:10.1016/j.ceramint.2021.12.279
Medvedev DA. Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electrochemical purposes. Curr Opin Green Sustain Chem. 2021;32:100549. doi:10.1016/j.cogsc.2021.100549
Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z. Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions. Mater Rep Energy. 2022;2:100158. doi:10.1016/j.matre.2022.100158
Lybye D, Poulsen FW, Mogensen M. Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ion. 2000;128:91–103. doi:10.1016/S0167-2738(99)00337-9
Stroeva AY, Gorelov VP, Balakireva VB. Conductivity of La1−xSrxSc1−yMgyO3−α (x = y = 0.01–0.20) in reducing atmosphere. Russ J Electrochem. 2010;46:784–788. doi:10.1134/S1023193510070116
Ito N, Matsumoto H, Kawasaki Y, Okada S, Ishihara T. The effect of Zn addition to La1−xSrxScO3–δ systems as a B-site dopant. Chem Lett. 2009;38:582–583. doi:10.1246/cl.2009.582
Kato H, Iguchi F, Yugami H. Compatibility and performance of La0.675Sr0.325Sc0.99Al0.01O3 perovskite-type oxide as an electrolyte material for SOFCs. Electrochem. 2014;82:845–850. doi:10.5796/electrochemistry.82.845
Ruddlesden SN, Popper P. The compound Sr3Ti2O7 and its structure. Acta Cryst. 1958;11:54–55. doi:10.1107/S0365110X58000128
Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishigaki T, Hester JR. New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater. 2014;26:2488−2491. doi:10.1021/cm500776x
Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S. Improved oxide-ion conductivity of NdBaInO4 by Sr doping. J Mater Chem A. 2015;3:11985. doi:10.1039/c5ta01336d
Ishihara T, Yan Yu, Sakai T, Ida S. Oxide ion conductivity in doped NdBaInO4. Solid State Ion. 2016;288:262. doi:10.1016/j.ssi.2016.01.011
Yang X, Liu S, Lu F, Xu J, Kuang X. Acceptor doping and oxygen vacancy migration in layered perovskite NdBaInO4-based mixed conductors. J Phys Chem C. 2016;120:6416–6426. doi:10.1021/acs.jpcc.6b00700
Fijii K, Yashima M. Discovery and development of BaNdInO4—A brief review. J Ceram Soc Jpn. 2018;126:852–859. doi:10.2109/jcersj2.18110
Troncoso L, Alonso JA, Aguadero A. Low activation energies for interstitial oxygen conduction in the layered perovskites La1+xSr1–xInO4+d. J Mater Chem A. 2015;3:17797–17803. doi:10.1039/c5ta03185k
Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A. Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1-xBxO4+δ system (B=Zr, Ti). Solid State Ion. 2015;282:82–87. doi:10.1016/j.ssi.2015.09.014
Troncoso L, Mariño C, Arce MD, Alonso JA. Dual oxygen defects in layered La1.2Sr0.8–xBaxInO4+d (x = 0.2, 0.3) oxide-ion conductors: A neutron diffraction study. Mater. 2019;12:1624. doi:10.3390/ma12101624
Tarasova N, Animitsa I, Galisheva A, Korona D. Incorporation and conduction of protons in Ca, Sr, Ba-doped BaLaInO4 with Ruddlesden-Popper structure. Mater. 2019;12:1668. doi:10.3390/ma12101668
Troncoso L, Arce MD, Fernández-Díaz MT, Mogni LV, Alonso JA. Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8–xBaxInO4+δ. New J Chem. 2019;43:6087–6094. doi:10.1039/C8NJ05320K
Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogni LV, Skinner SJ. Protonic conduction in the BaNdInO4 structure achieved by acceptor doping. Chem Mater. 2021;33:2139–2146. doi:10.1021/acs.chemmater.0c04828
Shiraiwa M, Kido T, Fujii K, Yashima M. High-temperature proton conductors based on the (110) layered perovskite BaNdScO4. J Mat Chem A. 2021;9:8607. doi:10.1039/D0TA11573H
Tarasova N, Animitsa I. Materials AIILnInO4 with Ruddlesden-Popper structure for electrochemical applications: Relationship between ion (oxygen-ion, proton) conductivity, water uptake and structural changes. Mater. 2022;15:114. doi:10.3390/ma15010114
Tarasova N, Animitsa I, Galisheva A, Medvedev D. Layered and hexagonal perovskites as novel classes of proton-conducting solid electrolytes: A focus review. Electrochem. Mater Technol. 2022;1:20221004. doi:10.15826/elmattech.2022.1.004
Tarasova N, Galisheva A, Animitsa I, Abakumova E, Belova K, Kreimesh H. Novel high conductive ceramic materials based on two-layer perovskite BaLa2In2O7. Int J Mol Sci. 2022;23:12813. doi:10.3390/ijms232112813
Tarasova N, Bedarkova A, Animitsa I, Belova K, Abakumova E, Cheremisina P, Medvedev D. Oxygen ion and proton transport in alkali-earth doped layered perovskites based on BaLa2In2O7. Inorg. 2022;10:161. doi:10.3390/inorganics10100161
Tarasova N, Bedarkova A, Animitsa I, Verinkina E. Synthesis, hydration processes and ionic conductivity of novel gadolinium-doped ceramic materials based on layered perovskite BaLa2In2O7 for electrochemical purposes. Processes. 2022;10:2536. doi:10.3390/pr10122536
Tarasova N, Bedarkova A, Animitsa I, Abakumova E. Cation and oxyanion doping of layered perovskite BaNd2In2O7: Oxygen-ion and proton transport. Int J Hydrog Energy. 2022, in press. doi:10.1016/j.ijhydene.2022.11.172
Tarasova N, Bedarkova A, Animitsa I, Abakumova E, Gnatyuk V, Zvonareva I. Novel protonic conductor SrLa2Sc2O7 with layered structure for electrochemical devices. Mater. 2022;15:8867. doi:10.3390/ma15248867
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551
Kreuer KD. Proton-conducting oxides. Annu Rev Mater Res. 2003;33:333–359. doi:10.1146/annurev.matsci.33.022802.09182
DOI: https://doi.org/10.15826/chimtech.2023.10.2.06
Copyright (c) 2023 Anzhelika Bedarkova, Nataliia Tarasova, Irina Animitsa, Ekaterina Abakumova, Irina Fedorova, Polina Cheremisina, Evgenia Verinkina
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International