Cover Image

The crystallization of thin Sb2Te films with vacuum annealing and an electron beam

Anton A. Yushkov, Vladimir Yu. Kolosov

Abstract


Thin Sb2Te films with a thickness gradient were studied via transmission electron microscopy. The processes of forced crystallization were examined with thermal annealing and an electron beam. The crystallization’s general tendencies, including competitive nucleation and growth crystallization, were revealed. As the thickness of the sample increases, the size of the crystals growing in the film enlarges. As the temperature increases, the number of crystals in the film grows. Crystallization under the action of an electron beam occurs mainly by nucleation mechanism.

Keywords


Sb2Te; thin films; phase-change materials; transmission electron microscopy

Full Text:

PDF

References


Xiao Z, Kisslinger K, Dimasi E, Kimbrough J. The fabrication of nanoscale Bi2Te3/Sb2Te3 multilayer thin film-based thermoelectric power chips. Microelectron Eng. 2018;197:8–14. doi:10.1016/j.mee.2018.05.001

Champier D. Thermoelectric generators: A review of applications. Energy Convers Manag. 2017;140:167–181. doi:10.1016/j.enconman.2017.02.070

Vieira EFM, Figueira J. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloys Compd. 2019;774:1102–1116. doi:10.1016/j.jallcom.2018.09.324

Haidar SA, Gao Y. Deposition and fabrication of sputtered bismuth telluride and antimony telluride for microscale thermoelectric energy harvesters. Thin Solid Films. 2021;717:138444(1–9). doi:10.1016/j.tsf.2020.138444

Voraud A, Seetawan T, Kumar M. Experimental and theoretical study of thermoelectric properties of rhombohedral GeSb5Te10 thin films. MSEB. 2019;250:114439(1–5). doi:10.1016/j.mseb.2019.114439

Ding X, Yang X. Theoretical analysis and simulation of a tunable mid-infrared filter based on Ge2Sb2Te5 (GST) metasurface. Superlattices Microstruct. 2019;132:106169(1–6). doi:10.1016/j.spmi.2019.106169

Cheng L, Yuan Y. Linear and nonlinear optical properties modulation of Sb2Te3/GeTe bilayer film as a promising saturable absorber. Results Phys. 2019;13:102282(1–7). doi:10.1016/j.rinp.2019.102282

Khusayfan, N. M. and Khanfar H. K. Characterization of CdS/Sb2Te3 micro/nano-interfaces. Optik. 2018;158:1154–1159. doi:10.1016/j.ijleo.2018.01.010

Liu G, Wu L. The investigations of characteristics of Sb2Te as a base phase-change material. Solid State Electron. 2017;135:31–36. doi:10.1016/j.sse.2017.06.004

Liu B, Song Z, Feng S, Chen B. Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material. Microelectron Eng. 2005;82(2):168–174. doi:10.1016/j.mee.2005.07.007

Ding K, Chen B, Rao F. Boosting crystallization speed in ultrathin phase-change bridge memory device using Sb2Te3. Mater Sci Semicond Process. 2021;136:105999(1–6). doi:10.1016/j.mssp.2021.105999

Hu J, Lin C. Cr-doped Sb2Te materials promising for high performance phase-change random access memory. J Alloys Compd. 2022;908:164593. doi:10.1016/j.jallcom.2022.164593

Wang G, Shen X. Improved thermal stability of C-doped Sb2Te films by increasing degree of disorder for memory application. Thin Solid Films. 2016;615:345–350. doi:10.1016/j.tsf.2016.07.059

Yang C-H, Chiang K-C, Hsief T-E. Nonvolatile floating gate memory characteristics of Sb2Te–SiO2 nanocomposite thin films. Thin Solid Films. 2013;529:263–268. doi:10.1016/j.tsf.2012.07.135

Liu F, Wang G, Zhang Y, Li C. Improved multi-level storage performance by insulator-metal transition of In2S3-doped Ge2Sb2Te5 films. Ceram. 2019;45:24090–24095. doi:10.1016/j.ceramint.2019.08.116

Lotnyk A, Hilmi I, Behrens M, Rauschenbach B. Temperature dependent evolution of local structure in chalcogenide-based superlattices. Appl Surf Sci. 2021;536:147959(1–8). doi:10.1016/j.apsusc.2020.147959

Jiang K, Lu Y. GeTe/Sb4Te films: A candidate for multilevel phase change memory. MSEB. 2018;231:81–85. doi:10.1016/j.mseb.2018.10.002

Kampmeier J, Weyrich C. Selective area growth of Bi2Te3 and Sb2Te3 topological insulator thin films. J Cryst Growth. 2016;443:38–42. doi:10.1016/j.jcrysgro.2016.03.012

Bera S, Behera P. Weak antilocalization in Sb2Te3 nano-crystalline topological insulator. Appl Surf Sci. 2019;496:143654(1–6). doi:10.1016/j.apsusc.2019.143654

Buga SG, Kulbachinskii VA. Superconductivity in bulk polycrystalline metastable phases of Sb2Te3 and Bi2Te3 quenched after high-pressure–high-temperature treatment. Chem Phys Lett. 2015;631:97–102. doi:10.1016/j.cplett.2015.04.056

Choi M, Choi H, Ahn J, Kim YT. Material design for Ge2Sb2Te5 phase-change material with thermal stability and lattice distortion. Scr Mater. 2019;170:16–19. doi:10.1016/j.scriptamat.2019.05.024

Nolot E, Sabbione C. Germanium, antimony, tellurium, their binary and ternary alloys and the impact of nitrogen: An X-ray photoelectron study. Appl Surf Sci. 2021;536:147703(1–21). doi:10.1016/j.apsusc.2020.147703

Peng L, Li Z. Reduction in thermal conductivity of Sb2Te phase-change material by scandium/yttrium doping. J Alloys Compd. 2020;821:153499(1–7). doi:10.1016/j.jallcom.2019.153499

Meng Y, She Q. Uniform silicon carbide doped Sb2Te nanomaterial for high temperature and high speed PCM applications. J Alloys Compd. 2016;664:591–594. doi:10.1016/j.jallcom.2016.01.036

Pandey SK, Manivannan A. Direct evidence for structural transformation and higher thermal stability of amorphous InSbTe phase change material. Scr Mater. 2021;192:73–77. doi:10.1016/j.scriptamat.2020.10.014

Delavignette P, Vook RW. Method for measuring the thickness of thin bent foils in transmission electron microscopy. Phys Stat Sol. 1963;3:648–653. doi:10.1002/pssb.19630030406

Kooi BJ, De Hosson ThM. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J Appl Phys. 2004;95(9):4714–4721. doi:10.1063/1.1690112

Song SA, Zhang W, Jeong HS, Kim J-G, Kim Y-J. In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides. Ultramicroscop. 2008;108. doi:10.1016/j.ultramic.2008.05.012

Ryu H, You Y, Paek MC, Kang K. Microscopic behavior of Sb in chalcogenide materials for crystallization process. Mater Sci Eng A. 2007;449:573–577. doi:10.1016/j.msea.2006.02.421

Kim YT, Kim ET, Kim CS, Lee JY. Phase transformation mechanism of In–Sb–Te through the boundary reaction between InSb and InTe. Phys Stat Sol. 2011;5(3):98–100. doi:10.1002/pssr.201004515




DOI: https://doi.org/10.15826/chimtech.2023.10.1.11

Copyright (c) 2022 Anton A. Yushkov, Vladimir Yu. Kolosov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International