Cover Image

Optical response of SrTiO3 thin films grown via a sol-gel-hydrothermal method

Yulia Eka Putri, Tio Putra Wendari, Restu Aulia Arham, Melvi Muharmi, Dedi Satria, Rahmayeni Rahmayeni, Diana Vanda Wellia

Abstract


The polycrystalline SrTiO3 thin films were prepared by the sol-gel-hydrothermal method on glass substrates. The synthesis pathway was initiated by preparing a clear TiO2 solution using the sol-gel method. This clear solution was then deposited on a glass substrate using the dip coating technique, followed by the transformation of a thin layer of TiO2 into SrTiO3 by the hydrothermal method. The crystal structure, bond interactions, and band gap energy of SrTiO3 thin layers were characterized using X-ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), and UV–Vis Diffuse Reflectance Spectroscopy (UV-DRS). The XRD patterns of all SrTiO3 thin layers indicated the perovskite structure of the samples. The FTIR spectrum showed an interaction of the silanol groups on the surface of the glass substrate with Ti–O–Ti of SrTiO3 layers. The characteristics of the UV-DRS spectrum were influenced by the thickness of the SrTiO3 layer formed on the glass substrate. The findings of this work provide insights for producing SrTiO3 layers with specified thickness and morphology.

Keywords


SrTiO3; thin film; perovskite; hydrothermal; optical properties

Full Text:

PDF

References


Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Sci. 2013;340(6138):1311–1314. doi:10.1126/science.1235547

Das S, Kim M, Lee JW, Choi W. Synthesis, properties, and applications of 2-D materials: a comprehensive review. Crit Rev Solid State Mater Sci. 2014;39(4):231–252. doi:10.1080/10408436.2013.836075

Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, et al. Electronics based on two-dimensional materials. Nat Nanotechnol. 2014;9(10):768–779. doi:10.1016/j.ceramint.2021.11.075

Putri YE, Wendari TP, Rahmah AA, Refinel R, Said SM, Sofyan N, et al. Tuning the morphology of SrTiO3 nanocubes and their enhanced electrical conductivity. Ceram Int. 2022 Feb 15;48(4):5321–6. doi:10.1016/j.ceramint.2021.11.075

Trejgis K, Dramićanin MD, Marciniak L. Highly sensitive multiparametric luminescent thermometer for biologically-relevant temperatures based on Mn4+, Ln3+ Co-doped SrTiO3 nanocrystals. J Alloys Compd. 2021;875. doi:10.1016/j.jallcom.2021.159973

Gastiasoro MN, Ruhman J, Fernandes RM. Superconductivity in dilute SrTiO3: a review. Ann Phys. 2020;417:168107. doi:10.1016/j.aop.2020.168107

Riemke FC, Ücker CL, Carreño NLV, da Silva Cava S, Teixeira MP, Fajardo HV, et al. Influence of Nb2O5 grown on SrTiO3 nanoseeds in the catalytic oxidation of thioanisole. Mater Chem Phys. 2022;278:125591. doi:10.1016/j.matchemphys.2021.125591

Bhogra A, Masarrat A, Meena R, Hasina D, Bala M, Dong CL, et al. Tuning the electrical and thermoelectric properties of N ion implanted SrTiO3 Thin films and their conduction mechanisms. Sci Rep. 2019;9(1):1–11. doi:10.1038/s41598-019-51079-y

Song H, Son JY. Examining imprinted ferroelectric hysteresis loops and improved energy storage properties of Mn-doped epitaxial SrTiO3 thin films using heat treatment. Mater Sci Eng B Solid-State Mater Adv Technol. 2022;285:115925. doi:10.1016/j.mseb.2022.115925

Ahadi K, Galletti L, Li Y, Salmani-Rezaie S, Wu W, Stemmer S. enhancing superconductivity in SrTiO3 films with strain. Sci Adv. 2019:1–6. doi:10.1126/sciadv.aaw0120

Hadj Youssef A, Ambriz Vargas F, Amaechi I, Sarkissian A, Merlen A, Thomas R, et al. Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films. Thin Solid Films. 2018;661:23–31. doi:10.1016/j.tsf.2018.05.054

Diao C, Li H, Yang Y, Hao H, Yao Z, Liu H. Significantly improved energy storage properties of sol-gel derived mn-modified SrTiO3 thin films. Ceram Int. 2019;45(9):11784–11791. doi:10.1016/j.ceramint.2019.03.056

Jung F, Delmdahl R, Heymann A, Fischer M, Karl H. Surface evolution of crystalline SrTiO3, LaAlO3 and Y3Al5O12 targets during pulsed laser ablation. Appl Phys A Mater Sci Process. 2022;128(9):750. doi:10.1007/s00339-022-05805-5

He C, Bu X, Yang S, He P, Ding G, Xie X. Core-shell SrTiO3 /graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Appl Surf Sci. 2018;436:373–381. doi:10.1016/j.apsusc.2017.12.063

Łęcki T, Zarębska K, Sobczak K, Skompska M. Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method. Appl Surf Sci. 2019;470:991–1002. doi:10.1016/j.apsusc.2018.11.200

Pratiwi N, Zulhadjri, Arief S, Wellia DV. A facile preparation of transparent ultrahydrophobic glass via TiO2/Octadecyltrichlorosilane (ODTS) coatings for self-cleaning material. Chem Sel. 2020;5(4):1450–1454. doi:10.1002/slct.201904153

Taherniya A, Raoufi D. Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Nanotechnol. 2018;29(27):1–19. doi:10.1088/2053-1591/aae4d0

Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv. 2017;3(11). doi:10.1126/sciadv.aao5616

Hong J, Heo SJ, Singh P. Water mediated growth of oriented single crystalline SrCO3 nanorod arrays on strontium compounds. Sci Rep. 2021;11(1):1–11. doi:10.1038/s41598-021-82651-0

Dimitriadi M, Zafiropoulou M, Zinelis S, Silikas N, Eliades G. Silane reactivity and resin bond strength to lithium disilicate ceramic surfaces. Dent Mater. 2019;35(8):1082–1094. doi:10.1016/j.dental.2019.05.002

Aguiar H, Serra J, González P, León B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids. 2009;355(8):475–480. doi:10.1016/j.jnoncrysol.2009.01.010

Yao M, Li F, Peng Y, Chen J, Su Z, Yao X. Enhanced electrical characteristics of sol–gel-derived amorphous SrTiO3 films. J Mater Sci Mater Electron. 2017;28(5):4044–4050. doi:10.1007/s10854-016-6018-8

Dulian P, Nachit W, Jaglarz J, Zięba P, Kanak J, Żukowski W. Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Opt Mater (Amst). 2019;90:264–272. doi:10.1016/j.optmat.2019.02.041




DOI: https://doi.org/10.15826/chimtech.2023.10.1.08

Copyright (c) 2022 Yulia Eka Putri, Tio Putra Wendari, Restu Aulia Arham, Melvi Muharmi, Dedi Satria, Rahmayeni Rahmayeni, Diana Vanda Wellia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International