Cover Image

Сomparison of Au, Au-Pt, and Au-Ag nanoparticles as markers for immunochromatographic determination of nonylphenol

Anna N. Berlina, Maria Y. Ragozina, Nadezhda S. Komova, Kseniya V. Serebrennikova, Anatoly V. Zherdev, Boris B. Dzantiev

Abstract


Gold spherical nanoparticles, gold-platinum nanoflowers, and gold-silver nanostars were obtained and compared as labels for immunochromatographic analysis. The nanoparticles were synthesized by chemical reduction from various precursors and then conjugated with staphylococcal protein A to be used in indirect immunochromatographic determination of nonylphenol. The results obtained were evaluated in terms of analytical characteristics and R2 value, as well as the color intensity of the test band. According to the comparison results, it was revealed that the R2 value varied from 0.82 for the gold-silver nanostars to 0.96 for the spherical gold nanoparticles. The working range of determined concentrations was from 2 to 100 μg/mL for unspherical and from 2 to 50 μg/mL – for spherical markers used; the analysis time was 20 min.

Keywords


gold nanoparticles; gold-platinum nanoflowers; gold-silver nanostars; immunochromatographic analysis; nonylphenol

Full Text:

PDF

References


Guo J, Chen S, Guo J, Ma X. Nanomaterial labels in lateral flow immunoassays for point-of-care-testing. J Mater Sci Technol. 2021;60:90–104. doi:10.1016/j.jmst.2020.06.003

Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: a review. Molec. 2021;26:5823. doi:10.3390/molecules26195823

Sotnikov DV, Berlina AN, Ivanov VS, Zherdev AV, Dzantiev BB. Adsorption of proteins on gold nanoparticles: One or more layers? Colloids Surfaces B Biointerfaces. 2019;173:557–563. doi:10.1016/j.colsurfb.2018.10.025

Hermanson GT, Chapter 20 – Antibody modification and conjugation, in Bioconjugate techniques (Third Edition), Hermanson, G.T., Editor. 2013, Academic Press: Boston. p. 867–920.

Petrakova AV, Urusov AE, Zherdev AV, Dzantiev BB. Gold nanoparticles of different shape for bicolor lateral flow test. Anal Biochem. 2019;568:7–13. doi:10.1016/j.ab.2018.12.015

Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification. Food Control. 2022;133:108655. doi:10.1016/j.foodcont.2021.108655

Panferov VG, Byzova NA, Zherdev AV, Dzantiev BB. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Microchim Acta. 2021;188(9):309. doi:10.1007/s00604-021-04968-x

Taranova N, Berlina A, Zherdev A, Dzantiev B. ‘Traffic light’immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors Bioelectron. 2015;63:255–261. doi:10.1016/j.bios.2014.07.049

Razo SC, Elovenkova AI, Safenkova IV, Drenova NV, Varitsev YA, Zherdev AV, Dzantiev BB. Comparative study of four coloured nanoparticle labels in lateral flow immunoassay. Nanomater. 2021;11(12):3277. doi:10.3390/nano11123277

Berlina AN, Taranova NA, Zherdev AV, Vengerov YY, Dzantiev BB. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Analyt Bioanalyt Chem. 2013;405(14):4997–5000. doi:10.1007/s00216-013-6876-3

Taranova NA, Urusov AE, Sadykhov EG, Zherdev AV, Dzantiev BB. Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin. Microchim Acta. 2017;184(10):4189–4195. doi:10.1007/s00604-017-2355-4

Panferov VG, Safenkova IV, Varitsev YA, Drenova NV, Kornev KP, Zherdev AV, Dzantiev BB. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers. Talanta. 2016;152:521–530. doi:10.1016/j.talanta.2016.02.050

Hong Y, Li H, Feng C, Liu D, Yan Z, Qiao Y, Bai Y, Wu F. A Review on the water quality criteria of nonylphenol and the methodological construction for reproduction toxicity endocrine disrupting chemicals. Rev Environ Contamin Toxicol. 2022;260(1):5. doi:10.1007/s44169-021-00002-6

Al Rashed N, Guenther K. Determination of endocrine-disrupting nonylphenols and nonylphenol carboxylates by high-performance liquid chromatography-tandem mass spectrometry: levels in German food after restriction. Analyt Lett. 2022;55(4):634–647. doi:10.1080/00032719.2021.1956515

Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors. 2021;21(15):5185. doi:10.3390/s21155185

Mart’ianov AA, Zherdev AV, Eremin SA, Dzantiev BB. Preparation of antibodies and development of enzyme-linked immunosorbent assay for nonylphenol. Int J Environ Analyt Chem. 2004;84(13):965–978. doi:10.1080/03067310410001729024

Mart’ianov AA, Dzantiev BB, Zherdev AV, Eremin SA, Cespedes R, Petrovic M, Barcelo D. Immunoenzyme assay of nonylphenol: study of selectivity and detection of alkylphenolic non-ionic surfactants in water samples. Talanta. 2005;65(2):367–374. doi:10.1016/j.talanta.2004.07.004

Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110(32):15700–15707. doi:10.1021/jp061667w

Zhang J, Yu Q, Qiu W, Li K, Qian L, Zhang X, Liu G. Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: application to detection of rabbit IgG. Microchim Acta. 2019;186(6):357. doi:10.1007/s00604-019-3464-z

Tukova A, Kuschnerus I, Garcia-Bennett A, Wang Y, Rodger A, Gold nanostars with reduced fouling facilitate small molecule detection in the presence of protein. Nanomater. 2021;11:2565. doi:10.3390/nano11102565




DOI: https://doi.org/10.15826/chimtech.2023.10.1.03

Copyright (c) 2022 Anna N. Berlina, Maria Y. Ragozina, Nadezhda S. Komova, Kseniya V. Serebrennikova, Anatoly V. Zherdev, Boris B. Dzantiev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International