Cover Image

Electrophoretic deposition of YSZ layers on pyrolytic graphite and a porous anode substrate based on NiO-YSZ

Artem V. Solovev, Georgy N. Starostin, Inna A. Zvonareva, Stanislav S. Tulenin, Vyacheslav F. Markov

Abstract


Solid oxide fuel cells are promising hydrogen energy devices. The goal of this research was to create ceramic layers for SOFCs based on yttria-stabilized zirconia (YSZ) and to investigate their parameters. YSZ ceramic layers with a thickness of 5.14 μm on a porous NiO–YSZ substrate and 7 μm on pyrolytic graphite were obtained by electrophoretic deposition. X-ray diffraction and electron microscopy were used to determine the composition, structure, and morphological features of ceramic layers. The effects of the substrate's nature, the degree of dispersion of the initial YSZ powder, and the heat treatment conditions on the properties of the ceramic layer YSZ were considered.

Keywords


zirconium dioxide; yttrium oxide; hydrogen energy; solid oxide fuel cell; electrophoretic deposition; YZS

Full Text:

PDF

References


Proskuryakova L. Foresight for the ‘energy’priority of the Russian Science and Technology Strategy. Energy Strateg Rev. 2019;26:100378. doi:10.1016/j.esr.2019.100378

Yang B, Li Y, Li J, Shu H, Zhao X, Ren Y. Comprehensive summary of solid oxide fuel cell control: a state-of-the-art review. Protect Control Modern Power Systems. 2022;7(1):1–31. doi:10.1186/s41601-022-00251-0

Giorgi L, Leccese F. Fuel cells: Technologies and applications. Open Fuel Cells J. 2013;6(1):1–20. doi:10.2174/1875932720130719001

Connor P. Solid oxide fuels cells: facts and figures. Springer. 2013;163–180. doi:10.1007/978-1-4471-4456-4_1

Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation – A review. Renewable Sustainable Energy Rev. 2013;20:430–442. doi:10.1016/j.rser.2012.11.031

Savignat SB., Chiron M., Barthet C. Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature. J Eur Ceram Soc. 2007;27(2–3):673–678. doi:10.1016/j.jeurceramsoc.2006.04.049

Dunyshkina LA. Vvedenie v metody polucheniya plenochnykh elektrolitov dlya tverdooksidnykh toplivnykh elementov: monografiya. Ekaterinburg: UrO RAS; 2015. 125 p. Russian.

Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environment Sci. 2016;9(5):1602–1644. doi:10.1039/C5EE03858H

Cooper SJ, Brandon NP. Solid oxide fuel cell lifetime and reliability: critical challenges in fuel cells. London: Academic Press. 2017; 223 p.

Ramadhani F, Hussain MA, Mokhlis H, Hajimolana S. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable Sustainable Energy Rev. 2017;76:460–484. doi:10.1016/j.rser.2017.03.052

Singh B, Ghosh S, Aich S, Roy B. Low temperature solid oxide electrolytes (LT-SOE): A review. J Power Sources. 2019;339:103–135. doi:10.1016/j.jpowsour.2016.11.019

Kalinina EG, Pikalova EY. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russ Chem Rev. 2019;88(12):1179. doi:10.1070/RCR4889

Pikalova EY, Kalinina EG. Place of electrophoretic deposition among thin-film methods adapted to the solid oxide fuel cell technology: A short review. Int J Energy Prod Manag. 2019;4(1):1–27. doi:10.2495/EQ-V4-N1-1-27

Kalinina EY, Pikalova EG. Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology. Mater. 2021;14(19):5584. doi:10.3390/ma14195584

Kalinina EG, Pikalova EY, Kolchugin AA, Pikalov SM, Kaigorodov AS. Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders. Solid State Ionics. 2017;302:126–132. doi:10.1016/j.ssi.2017.01.016

Das D, Basu RN. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates. Mater Res Bull. 2013;48(9):3254–3261. doi:10.1016/j.materresbull.2013.05.034

Besra L, Compson C, Liu M. Electrophoretic deposition on non-conducting substrates: the case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application. J Power Sources. 2007;173(1):130–136. doi:10.1016/j.jpowsour.2007.04.061

Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1–61. doi:10.1016/j.pmatsci.2006.07.001

Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: From traditional ceramics to nanotechnology. Journal of the Eur Ceram Soc. 2008;28(7):1353–1367. doi:10.1016/j.jeurceramsoc.2007.12.011

Kalinina EG, Pikalova EY, Safronov AP. A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation. Russ J Appl Chem. 2017;90(5):701–707. doi:10.1134/S1070427217050056

Pikalova EY, Kalinina EG. Electrophoretic deposition in the solid oxide fuel cell technology: Fundamentals and recent advances. Renewable Sustain Energy Rev. 2019;116:109440. doi:10.1016/j.rser.2019.109440

Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H. Electrophoretic deposition of YSZ powders for solid oxide fuel cells. J Mater Sci. 2004;39(3):833–838. doi:10.1023/B:JMSC.0000012911.86185.13

Kalinina EG, Samatov OM, Safronov AP. Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells. Inorg Mater. 2016;52(8):858–864. doi:10.1134/S0020168516080094

Das D, Basu RN. Organic acids as electrostatic dispersing agents to prepare high quality particulate thin film. J Alloys Compd. 2017;729:71–83. doi:10.1016/j.jallcom.2017.09.097

Ferrari B, Moreno R. Zirconia thick films deposited on nickel by aqueous electrophoretic deposition. J Electrochem Soc. 2000;147(8):2987. doi:10.1149/1.1393636

Fukada YN, Nagarajan W, Mekky W. Electrophoretic deposition—mechanisms, myths and materials. J Mater Sci. 2004;39(3):787–801. doi:10.1023/B:JMSC.0000012906.70457.df

Sánchez-Miranda MJ, Sarmiento-Gómez E, Arauz-Lara JL. Brownian motion of optically anisotropic spherical particles in polymeric suspensions. Eur Phys J E. 2015;38(1):1–6. doi:10.1140/epje/i2015-15003-x

Kostikova VI, Eremeeva ZhV. Technology of composite materials. Vologda: Infra-Engineering; 2021. 484 p. Russian.

Das D, Bagchi B, Basu RN. Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. J Alloys Compd. 2017;693:220–1230. doi:10.1016/j.jallcom.2016.10.088




DOI: https://doi.org/10.15826/chimtech.2022.9.4.25

Copyright (c) 2022 Artem V. Solovev, Georgy N. Starostin, Inna A. Zvonareva, Stanislav S. Tulenin , Vyacheslav F. Markov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International