Cover Image

Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane

Alina Rabadanova, Magomed Abdurakhmanov, Rashid Gulakhmedov, Abdulatip Shuaibov, Daud Selimov, Dinara Sobola, Klára Částková, Shikhgasan Ramazanov, Farid Orudzhev

Abstract


A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.


Keywords


PVDF; photocatalysis; piezocatalysis; piezophotocatalysis; nanofibers; coaxial electrospinning; CTAB; methylene blue

Full Text:

PDF

References


Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere. 2021;275:130104. doi:10.1016/j.chemosphere.2021.130104

Wang H, Li X, Zhao X, Li C, Song X, Zhang P, & Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin J Catal. 2022;43(2):178–214. doi:10.1016/j.chemosphere.2021.130104

Wang, Zhong Lin. Piezotronic and piezophototronic effects. J Phys Chem Lett. 2010;1(9):1388-1393. doi:10.1021/jz100330j

Liang Z, Yan CF, Rtimi S, Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl Catal Environ. 2019;241:256–269. doi:10.1016/j.apcatb.2018.09.028

Jamal MA, Sajid TA, Saeed M, Naseem B, Muneer M. Explication of molecular interactions between leucine and pharmaceutical active ionic liquid in an aqueous system: Volumetric and acoustic studies. J Molec Liq. 2022;119–510. doi:10.1016/j.molliq.2022.119510

He H, Fu Y, Zang W, Wang, Q, Xing L, Zhang Y, Xue X. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy. 2017;31:37–48. doi:10.1016/j.nanoen.2016.11.020

Lin, Hung-Ming, and Kao-Shuo Chang. Synergistic piezophotocatalytic and photoelectrochemical performance of poly (vinylidene fluoride)–ZnSnO3 and poly (methyl methacrylate)–ZnSnO3 nanocomposites. RSC Adv. 2017;7(49):30513–30520. doi:10.1039/C7RA05175A

Kadiev MV, Shuaibov AO, Abdurakhmanov MG, Selimov DA, Gulakhmedov RR, Rabadanova AA, Orudzhev FF. Synthesis and investigation of piezophotocatalytic properties of polyvinylidene fluoride nanofibers modified with titanium dioxide. Moscow Univ Chem Bull. 2022;77(5):256–261. doi:10.3103/S0027131422050054

Orudzhev F, Ramazanov S, Sobola D, Kaspar P, Trčka T, Částková K, Kadiev M. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106–586. doi:10.1016/j.nanoen.2021.106586

Pisarenko T, Papež N, Sobola D, Ţălu Ş, Částková K, Škarvada P, Kaštyl J. Comprehensive characterization of PVDF nanofibers at macro-and nanolevel. Polym. 2022;14(3):593. doi:10.3390/polym14030593

Surmenev RA, Chernozem RV, Pariy IO, Surmeneva MA. A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy. 2021;79:105442. doi:10.1016/j.nanoen.2020.105442

Surmenev RA, Orlova T, Chernozem R.V, Ivanova A.A, Bartasyte A, Mathur S, Surmeneva MA. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy. 2019;62:475–506. doi:10.1016/j.nanoen.2019.04.090

Zakria HS, Othman MHD, Kamaludin R, Kadir SHSA, Kurniawan TA, Jilani A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC advances. 2021;11(12):6985–7014. doi:10.1039/D0RA10964A

Li Y, Xu JZ, Zhu L, Xu H, Pan MW, Zhong GJ, Li ZM. Multiple stage crystallization of gamma phase poly (vinylidene fluoride) induced by ion-dipole interaction as revealed by time-resolved FTIR and two-dimensional correlation analysis. Polym. 2014;55(18):4765–4775. doi:10.1016/j.polymer.2014.07.022

Li Y, Xu JZ, Zhu L, Zhong GJ, Li ZM. Role of ion–dipole interactions in nucleation of gamma poly (vinylidene fluoride) in the presence of graphene oxide during melt crystallization. J Phys Chem B. 2012;116(51):14951–14960. doi:10.1021/jp3087607

Song L, Sun S, Zhang S, Wei J. Hydrogen production and mechanism from water splitting by metal-free organic polymers PVDF/PVDF-HFP under drive by vibrational energy. Fuel. 2022;324:124572. doi:10.1016/j.fuel.2022.124572

Liu X, Xu S, Kuang X, Wang X. Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase. RSC Adv. 2016;6:106690–106696. doi:10.1039/C6RA24195F

Castkova K, Kastyl J, Sobola D, Petrus J, Stastna E, Riha D, Tofel P. Structure–properties relationship of electrospun pvdf fibers. Nanomater. 2020;10(6):1221. doi:10.3390/nano10061221

Gang C, Zhang J, Yang S. Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem Commun. 2008;10(1):7–11. doi:10.1016/j.elecom.2007.10.006

Sobola D, Kaspar P, Částková K, Dallaev R, Papež N, Sedlák P, Holcman V. PVDF Fibers Modification by Nitrate Salts Doping. Polym. 2021;13(15):2439. doi:10.3390/polym13152439

Kaspar P, Sobola D, Částková K, Dallaev R, Šťastná E, Sedlák P, Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes. Mater. 2021;14(6):1428. doi:10.3390/ma14061428

Mohammadi Ghaleni M, Al Balushi A, Kaviani S, Tavakoli E, Bavarian M, Nejati S. Fabrication of Janus membranes for desalination of oil-contaminated saline water. ACS Appl Mater Interfaces. 2018;10(51):44871–44879. doi:10.1021/acsami.8b16621

Shokr FS. The influence of dipoles orientation on the charge transport mechanism of Au/rr-P3HT/P (VDF-TrFE) heterojunction diode in the form of 1D-line grating nanostructure arrays. Res Phys. 2019;12:754–758. doi:10.1016/j.rinp.2018.12.033

Zhu Q, Zhang K, Li D, Li N, Xu J, Bahnemann DW, Wang C. Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chem Eng J. 2021;426:131681. doi:10.1016/j.cej.2021.131681

Zhang D, Dai F, Zhang P, An Z, Zhao Y, Chen L. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Mater Sci Eng. 2019;96:684–692. doi:10.1016/j.msec.2018.11.049

Tang T, Li C, He W, Hong W, Zhu H, Liu G, Lei C. Preparation of MOF-derived C-ZnO/PVDF composites membrane for the degradation of methylene blue under UV-light irradiation. J Alloys Compd. 2022;894:162559. doi:10.1016/j.jallcom.2021.162559

Lou L, Wang J, Lee YJ, Ramkumar SS. Visible light photocatalytic functional TiO2/PVDF nanofibers for dye pollutant degradation. Particle Systems Characteriz. 2019;36(9):1900091. doi:10.1002/ppsc.201900091

Zhou TT, Zhao FH, Cui YQ, Chen LX, Yan JS, Wang XX, Long Y.Z. Flexible TiO2/PVDF/g-C3N4 nanocomposite with excellent light photocatalytic performance. Polym. 2019;12(1):55. doi:10.3390/polym12010055

Hong W, Li C, Tang T, Xu H, Yu Y, Liu G, Zhu H. The photocatalytic activity of the SnO2/TiO2/PVDF composite membrane in rhodamine B degradation. New J Chem. 2021;45(5):2631–2642. doi:10.1039/D0NJ04764C

Dzinun H, Ichikawa Y, Mitsuhiro H, Zhang Q. Efficient immobilised TiO2 in polyvinylidene fluoride (PVDF) membrane for photocatalytic degradation of methylene blue. Journal of Membrane Sci Res. 2020;6(2):188–195. doi:10.1039/D0NJ04764C

Alyarnezhad S, Marino T, Parsa J.B, Galiano F, Ursino C, Garcìa H, Figoli A. Polyvinylidene fluoride-graphene oxide membranes for dye removal under visible light irradiation. Polym. 2020;12(7):1509. doi:10.3390/polym12071509

Abdelmaksoud M, Mohamed A, Sayed A, Khairy S. Physical properties of PVDF-GO/black-TiO2 nanofibers and its photocatalytic degradation of methylene blue and malachite green dyes. Environ Sci Pollut Res. 2021;28(24):30613–30625. doi:10.1007/s11356-021-12618-1

Ouyang Y, Otitoju TA, Jiang D, Li S, Shoparwe NF, Wang S, Zhang A. Synthesis of PVDF‐B4C mixed matrix membrane for ultrafiltration of protein and photocatalytic dye removal. J Appl Polym Sci. 2022;139(8):51663. doi:10.1002/app.51663

Zang C, Han X, Chen H, Zhang H, Lei Y, Liu H, Ge M. In situ growth of ZnO/Ag2O heterostructures on PVDF nanofibers as efficient visible-light-driven photocatalysts. Ceram Int. 2022;48(19):27379–27387. doi:10.1016/j.ceramint.2022.05.312




DOI: https://doi.org/10.15826/chimtech.2022.9.4.20

Copyright (c) 2022 Alina Rabadanova, Magomed Abdurakhmanov, Rashid Gulakhmedov, Abdulatip Shuaibov, Daud Selimov, Dinara Sobola, Klára Částková, Shikhgasan Ramazanov, Farid Orudzhev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International