Cover Image

Electrochemical behavior of chloramphenicol on carbon electrodes in a microelectrochemical cell

Tatiana S. Svalova, Regina A. Zaidullina, Margarita V. Medvedeva, Elizaveta D. Vedernikova, Alisa N. Kozitsina

Abstract


Express determination of antibiotics is an extremely important task today. Portable electrochemical microdevices are a viable alternative to traditional methods of analysis. The development of such devices requires the study of redox processes in detail. This article is devoted to the comparative study of the electrochemical behavior of chloramphenicol in water solvents in standard laboratory and portable microelectrochemical cells. It was found that the electrochemical reduction of chloramphenicol proceeds via a 3-electron mechanism to the formation of a dimer. In the transition from the macrocell to the microcell, a decrease in the electrochemical reduction current and a shift of the peak potential to the cathode region are observed, which is apparently associated mainly with the type of the electrode material. The best characteristics of the direct electrochemical response were obtained in the differential pulse voltammetry mode. Under the selected operating parameters, the peak current of the electrochemical reduction of chloramphenicol is linearly dependent on the concentration of the antibiotic in the range of 2∙10–3–1∙10–5 M with a detection limit of 3∙10–5 M. Obtained characteristics are sufficient for the quality control of pharmaceuticals and can be improved through the use of organic and hybrid modifiers of the working electrode surface.

Keywords


chloramphenicol; express-determination; electrochemical behavior; voltammetry; microcell; screen-printed electrode

Full Text:

PDF

References


Bai X, Qin C, Huang X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Microchim Acta. 2016;183(11):2973–2981. doi:10.1007/s00604-016-1945-x

Zaidi SA. Recent advancement in various electrochemical and immunosensing strategies for detection of chloramphenicol. Int J Electrochem Sci. 2013;8(7):9936–9955.

Viñas P, Balsalobre N, Hernández-Córdoba M. Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection. Anal Chim Acta. 2006;558(1–2):11–15. doi:10.1016/j.aca.2005.10.059

AlAani H, Alnukkary Y. Stability-indicating HPLC method for simultaneous determination of chloramphenicol, dexamethasone sodium phosphate and tetrahydrozoline hydrochloride in ophthalmic solution. Adv Pharm Bull. 2016;6(1):137–141. doi:10.15171/apb.2016.020

Naik SD, Nagaraja P, Yathirajan HS, Hemanthakumar MS, Mohan BM. New spectrophotometric methods for the quantitative determination of chloramphenicol in pharmaceuticals. Pharm Chem J. 2006;40(10):576–581. doi:10.1007/s11094-006-0197-1

Kucharska U, Leszczynska J. The use of ELISA method for the determination of chloramphenicol in food products of animal origin. Chem Listy. 2000;94(3):190–194.

Qu F, Li NB, Luo HQ. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir. 2013;29(4):1199–1205. doi:10.1021/la304558r

Chuanuwatanakul S, Chailapakul O, Motomizu S. Electrochemical analysis of chloramphenicol using boron-doped diamond electrode applied to a flow-injection system. Anal Sci. 2008;24(4):493–498. doi:10.2116/analsci.24.493

Hue NT, Pham TN, Dinh NX. et al. AuNPs-modified screen-printed electrodes (SPCE and SPPtE) for enhanced direct detection of chloramphenicol. J Electron Mater. 2022;51:1669–1680. doi:10.1007/s11664-022-09434-9

Pakapongpan S, Poo-arporn Y, Tuantranont A, Poo-arporn RP. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol. Talanta. 2022;241. doi:10.1016/j.talanta.2021.123184

Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. J Hazard Mater. 2022;423. doi:10.1016/j.jhazmat.2021.127014

Metters JP, Kadara RO, Banks CE. New directions in screen printed electroanalytical sensors: An overview of recent developments. Anal. 2011;136(6):1067–1076. doi:10.1039/c0an00894j

Porada R, Jedlińska K, Lipińska J, Baś B. Review – voltammetric sensors with laterally placed working electrodes: A review. J Electrochem Soc. 2020;167(3). doi:10.1149/1945-7111/ab64d6

Matemadombo F, Apetrei C, Nyokong T, Rodríguez-Méndez ML, De Saja JA. Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using CoPc derivatives. Sens Actuators B Chem. 2012;166–167:457–466. doi:10.1016/j.snb.2012.02.088

Hussain G, Silvester DS. Comparison of voltammetric techniques for ammonia sensing in ionic liquids. Electroanal. 2018;30(1):75–83. doi:10.1002/elan.201700555

Farhana Roslan NA, Rahim RA, Md Ralib AA, Za’bah NF, Nordin AN, Riza Bashri MS, Suhaimi MI, Samsudin Z, Ming LL, Sugandi G. Simulation of geometrical parameters of screen printed electrode (SPE) for electrochemical-based sensor. Proc 2021 IEEE Reg Symp Micro Nanoelectron RSM. 2021:137–140. doi:10.1109/RSM52397.2021.9511577

Prasek J, Trnkova L, Gablech I, Businova P, Drbohlavova J, Chomoucka J, Adam V, Kizek R, Hubalek J. Optimization of planar three-electrode systems for redox system detection. Int J Electrochem Sci. 2012;7(3):1785–1801.

Bard AJ, Faulkner LR. Electrochemical Methods: Fundamen-tals and Applications. 2nd ed. New York: John Wiley & Sons; 2001. 833 p.

Ivoilova AV, Mikhal’chenko LV, Tsmokalyuk AN, Kozitsina AN, Ivanova AV, Rusinov VL. Redox conversions of new antiviral drug triazavirin®: Electrochemical study and ESR spectroscopy. Russ Chem Bull. 2021;70(6):1099–1108. doi:10.1007/s11172-021-3190-7




DOI: https://doi.org/10.15826/chimtech.2022.9.4.09

Copyright (c) 2022 Tatiana S. Svalova, Regina A. Zaidullina, Margarita V. Medvedeva, Elizaveta D. Vedernikova, Alisa N. Kozitsina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International