Cover Image

Glucose-assisted polyol synthesis of silver nanoplates and nanoprisms in the presence of oxyethylated carboxylic acid

Alexander A. Titkov, Tatiana A. Borisenko, Olga A. Logutenko

Abstract


This work reports a simple route to synthesizing silver nanoplates and nanoprisms through a polyol approach in the presence of oxyethylated carboxylic acid and glucose. The resulting particles were characterized by electron microscopy and X-ray diffraction (XRD). The introduction of glucose and NaOH into the system substantially increases the yield of nanoplates and reduces their thickness. The optimized reaction conditions can be used to produce, in a one-pot synthesis, silver nanoplates and nanoprisms which may have applications as metallic fillers in ink and paste formulations for 2D and 3D printing to fabricate functional components and devices.

Keywords


silver; nanoprisms; ethylene glycol; glucose; reduction

Full Text:

PDF

References


Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–685. doi:10.1002/adma.200901141

Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4:703–713. doi:10.1039/B711984D

Zhang R, Moon KS, Lin W, Wong CP. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. J Mater Chem. 2010;20:2018−2023. doi:10.1039/B921072E

Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9(2):78. doi:10.3390/bios9020078

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B. 2003;107(3):668–677. doi:10.1021/jp026731y

Lee YI, Kim S, Jung SB, Myung NV, Choa YH. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. ACS Appl Mater Interfaces. 2013;5(13):5908−5913. doi:10.1021/am401757y

Zhao T, Sun R, Yu Sh, Zhang Zh, Zhou L, Huang H, Du R. Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids Surf A Physicochem Eng Asp. 2010:336:197–202. doi:10.1016/j.colsurfa.2010.06.005

Park KH, Im SH, Park OO. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials. Nanotechnol. 2011;22(4):045602. doi:10.1088/0957-4484/22/4/045602

Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA. Colloidal gold and silver triangular nanoprisms. Small. 2009;5(6):646–664. doi:10.1002/smll.200801480

Ren HM, Guo Y, Huang SY, Zhang K, Yuen MMF, Fu XZ, Yu S, Sun R, Wong CP. One-Step preparation of silver hexagonal microsheets as electrically conductive adhesive fillers for printed electronics. ACS Appl Mater Interfaces. 2015;7:13685–13692. doi:10.1021/acsami.5b03571

Xue C, Mirkin CA. pH-switchable silver nanoprism growth pathways. Angew Chem Int Ed. 2007;46(12):2036–2038. doi:10.1002/anie.200604637

Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc. 2011;133(46):18931–18939. doi:10.1021/ja2080345

Sun YG, Mayers B, Herricks T, Xia YN. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003;3(7):955–960. doi:10.1021/nl034312m

Xia X, Zeng J, Zhang Q, Moran CH, Xia Y. Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C. 2012;116(41):21647–21656. doi:10.1021/jp306063p

You T, Sun S, Song X, Xu S. Simple extraction-solvothermal synthesis of single-crystalline silver microplates. Cryst Res Technol. 2009;44(8):857–860. doi:10.1002/crat.200900332

Xiong Y, Siekkinen AR, Wang J, Yin Y, Kim MJ. Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem. 2007;17:2600–2602. doi:10.1039/B705253G

Titkov AI, Borisenko TA, Logutenko OA. Polyol synthesis of silver nano- and microplates in the presence of an ethoxylated carboxylic acid. Chem Sustain Dev. 2020;28:66–72. doi:10.15372/KhUR2020204

Shenoy US, Shetty AN. Simple glucose reduction route for one-step synthesis of copper nanodluids. Appl Nanosci. 2014;4:47–54. doi:10.1007/s13204-012-0169-6

Raveendran P, Fu J, Wallen SL. A simple and „green“ method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006;8:34–38. doi:10.1039/B512540E

Giersig M, Ung T, Liz-Marzan LM, Mulvaney P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv Mater Commun. 1997;9(7):570–575. doi:10.1002/adma.19970090712




DOI: https://doi.org/10.15826/chimtech.2022.9.3.09

Copyright (c) 2022 Alexander A. Titkov, Tatiana A. Borisenko, Olga A. Logutenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International