Peculiarities of electrophoretic deposition and morphology of deposited films in non-aqueous suspensions of Al2O3–Al nanopowder
Abstract
Keywords
Full Text:
PDFReferences
Rakshit R, Das A. A review on cutting of industrial ceramic materials. Precis Eng. 2019;59:90–109. doi:10.1016/j.precisioneng.2019.05.009
Zhang T, Zeng Z, Huang H, Hing P, Kilner J. Effect of alumi-na addition on the electrical and mechanical properties of Ce0.8Gd0.2O2−δ ceramics. Mat Lett. 2002;57(1):124–129. doi:10.1016/s0167-577x(02)00717-6
Sal’nikov VV, Pikalova EYu, Proshina AV, Kuz’mina LA. Electrophysical properties of Ce0.8Gd0.2O2−δ + x mol % Al2O3 solid composite electrolytes. Russ J Electrochem. 2011;47(9):1049–1055. doi:10.1134/S102319351108012X
Frolov EI, Notina PV, Zvonarev SV, Il'ina EA, Churkin VYu, Synthesis and Research of Alumina Ceramics Properties. Chim Techno Acta. 2021;8(1):20218102. doi:10.15826/chimtech.2021.8.1.02
Korhonen H, Syväluoto A, Leskinen JTT, Lappalainen R. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition. Opt Laser Technol. 2018;98:373–384. doi:10.1016/j.optlastec.2017.07.050
Ogita Y, Saito N. Formation of alumina film using alloy catalyzers in catalytic chemical vapor deposition. Thin Sol-id Films. 2015;575:47–51. doi:10.1016/j.tsf.2014.10.022
Hu S, Li W, Finklea H, Liu X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci. 2020;276:102102. doi:10.1016/j.cis.2020.102102
Pikalova EYu, Kalinina EG. Electrophoretic deposition in the solid oxide fuel cell technology: Fundamentals and re-cent advances. Renew Sust Energ Rev. 2019;116:109440. doi:10.1016/j.rser.2019.109440
Kalinina EG, Pikalova EYu. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solu-tions and development prospects. Russ Chem Rev. 2019;88(12):1179. doi:10.1070/RCR4889
Pikalova EY, Kalinina EG, Place of electrophoretic deposi-tion among thin-film methods adapted to the solid oxide fuel cell technology: a short review. Int J Energy Prod Mgmt. 2019;4(1):1–27. doi:10.2495/EQ-V4-N1-1-27
Koelmans H, Overbeek JTG. Stability and electrophoretic deposition of suspensions in non-aqueous media. Discuss Faraday Soc. 1954;18:52–63. doi:10.1039/DF9541800052
Dukhin SS, Derjaguin BV. Surface and Colloid Sciences. New York: Wiley-Interscience; 1974. 335 p.
Van der Biest OO, Vandeperre LJ. Electrophoretic deposition of materials. Annu Rev Mater Sci. 1999;29:327–352. doi:10.1146/annurev.matsci.29.1.327
Derjaguin BV, Landau LD. Theory of the Stability of Strong-ly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physico-chim. URSS. 1941;14:633–662.
Verwey EJW, Overbeek JThG. Theory of the stability of lyo-phobic colloids. Amsterdam: Elsevier; 1948. 205 p.
Henry DC. The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proc R Soc Lond. 1931;133(821):106–29. doi:10.1098/rspa.1931.0133
Hunter RJ. Zeta Potential in Colloid Science: Principles and Applications. Colloid science. London: Academic Press; 1981. 391 p.
Novak S, König K. Fabrication of alumina parts by electro-phoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 2009;35(7):2823–2829. doi:10.1016/j.ceramint.2009.03.033
Song G, Xu G, Quan Y, Davies PA. Uniform design for the optimization of Al2O3 nanofilms produced by electrophoret-ic deposition. Surf Coat Technol. 2016;286:268–278. doi:10.1016/j.surfcoat.2015.12.039
Kotov YuA, Beketov IV, Azarkevich EI, Murzakaev AM. Syn-thesis of Nanometer-Sized Powders of Alumina Containing Magnesia. In: Proceedings of the Ninth CIMTEC-World Ce-ramic Congress “Ceramics: Getting into the 2000s”, 1998 Jun 14–19; Florence, Italy. p. 277–284.
Kotov YuA. Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanopart. Res. 2003;5:539–550. doi:10.1023/B:NANO.0000006069.45073.0b
Kotov YuA. The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders. Nano-technol. Russia. 2009;4:415–424. doi:10.1134/S1995078009070039
Beketov IV, Safronov AP, Medvedev AI, Murzakaev AM, Zhidkov IS, Cholah SO, Maximov AD, Encapsulation of Ni nanoparticles with oxide shell in vapor condensation. Chim. Techno Acta. 2019;6(3):93–103. doi:10.15826/chimtech.2019.6.3.02
Safronov AP, Kalinina EG, Smirnova TA, Leiman DV, Bag-azeev AV. Self-stabilization of aqueous suspensions of alu-mina nanoparticles obtained by electrical explosion. Russ J Phys Chem А. 2010;84:2122–2127. doi:10.1134/S0036024410120204
Kalinina EG, Rusakova DS, Kaigorodov AS, Farlenkov AS, Safronov AP. Formation of bulk alumina ceramics by elec-trophoretic deposition from nanoparticle suspensions. Russ J Phys Chem A. 2021;95(8):1519–1528. doi:10.1134/S0036024421080148
Kalinina EG, Rusakova DS, Pikalova EYu, Electrophoretic deposition of coatings and bulk compacts using magnesi-um-doped aluminum oxide nanopowders. Chim Techno Ac-ta. 2021;8(2):20218206. doi:10.15826/chimtech.2021.8.2.06
Mostafapour L, Baghshahi S, Rajabi M, Siahpoosh SM, Esfehani F, Kinetic evaluation of YSZ/Al2O3 nanocomposite coatings fabricated by electrophoretic deposition on a nick-el-based superalloy. Process Appl Ceram. 2021;15(1):1–10. doi:10.2298/PAC2101001M
Ahmadi M, Aghajani H, Structural characterization of YSZ/Al2O3 nanostructured composite coating fabricated by electrophoretic deposition and reaction bonding. Ceram Int. 2018;44(6):5988–5995. doi:10.1016/j.ceramint.2017.12.185
Kalinina EG, Efimov AA, Safronov AP, Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders. Inorg Mater. 2016;52(12):1301–1306. doi:10.1134/s0020168516110054
Sorokina L, Ryazanov R, Shaman Yu, Lebedev E, Electropho-retic deposition of Al-CuOx thermite materials on patterned electrodes for microenergetic applications. E3S Web Conf. 2021;239:00015. doi:10.1051/e3sconf/202123900015
Carrique F, Arroyo FJ, Jimenez ML, Delgado ÁV. Influence of Double-Layer overlap on the electrophoretic mobility and dc conductivity of a concentrated suspension of spherical particles. J Phys Chem B. 2003;107(14):3199–3206. doi:10.1021/jp027148k
Liu J, Wang LQ, Bunker BC, Graff GL, Virden JW, Jones RH. Effect of hydrolysis on the colloidal stability of fine alumi-na suspensions. Mater Sci Eng A. 1995;204(1-2):169–175. doi:10.1016/0921-5093(95)09955-7
Besra L, Uchikoshi T, Suzuki TS, Sakka Y. Experimental verification of pH localization mechanism of particle con-solidation at the electrode/solution interface and its appli-cation to pulsed DC electrophoretic deposition (EPD). J Eur Ceram Soc. 2010;30(5):1187–1193. doi:10.1016/j.jeurceramsoc.2009.07.004
Ammam M. Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2012;2:7633–7646. doi:10.1039/c2ra01342h
DOI: https://doi.org/10.15826/chimtech.2022.9.2.07
Copyright (c) 2022 Elena G. Kalinina, Darya S. Rusakova, Elena Yu. Pikalova
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International