Phosphorous-containing copolymers loaded with silver nanoparticles for biomedical purposes
Abstract
Keywords
Full Text:
PDFReferences
Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. J Biol Macromol. 2012;51(4):583–589. doi:10.1016/j.ijbiomac.2012.06.033
Schultz S, Smith D, Mock J, Schultz D. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceed Nat Acad Sci USA. 2000;97(3):996–1001. doi:10.1073/pnas.97.3.996
Taton T, Mirkin C, Letsinger R. Scanometric DNA Array Detection with Nanoparticle Probes Sci. 2000;289(5485):1757–1760. doi:10.1126/science.289.5485.1757
Yguerabide J, Yguerabide E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: ii. experimental characterization. Anal Biochem. 1998;262(2):157–176. doi:10.1006/abio.1998.2760
García-Barrasa J, López-de-Luzuriaga JM, Monge M. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9(1):7–19. doi:10.2478/s11532-010-0124-x
Vegera AV, Zimon AD. Synthesis and physicochemical properties of silver nanoparticles stabilized by acid gelatine. Russ J Appl Chem. 2006;79(9):1403–1406. doi:10.1134/S1070427206090023
Gorbunova M, Lemkina L, Eroshenko D, Gileva K. N‐vinylpyrrolidone copolymers decorated with silver nanoparticles for biomedical applications. Polym Adv Tech. 2019;30(2):336–343. doi:10.1002/pat.4470
Gorbunova MN, Batueva TD, Kiselkov DM, Strelnikov VN. Silver nanocomposites based on copolymers of N,N-diallyl-N’-acetylhydrazine with N-vinylpyrrolidone. Russ Chem Bull. 2021;70(9):1706–1712. doi:10.1007/s11172-021-3273-5
Gorbunova M, Batueva T. Silver nanocomposites based on copolymers of N,N-diallyl-N’-acylhydrazines with N-vinylpyrrolidone. IOP Conf Ser Mater Sci Eng. 2020;848:012022. doi:10.1088/1757-899X/848/1/012022
Kopeikin VV, Panarin EF. Water-Soluble Nanocomposites of Zerovalent Metallic Silver with Enhanced Antimicrobial Activity. Dokl Chem. 2001;380(4–6):277–279. doi:10.1023/A:1012396522426
Kurmaz SV, Sen´ VD, Kulikov AV, Konev DV, Kurmaz VA, Balakina AA, Terent´ev AA. Polymer nanoparticles of N-vinylpyrrolidone loaded with an organic aminonitroxyl platinum (IV) complex. Characterization and investigation of their in vitro cytotoxicity. Russ Chem Bull. 2019;68:1769–1779. doi:10.1007/s11172-019-2623-z
Kurmaz SV, Fadeeva NV, Fedorov BS, Kozub GI, Emel´yanova NS, Kurmaz VA, Manzhos RA, Balakina AA, Terent´ev AA. New antitumor hybrid materials based on PtIV organic complex and polymer nanoparticles consisting of N-vinylpyrrolidone and (di)methacrylates. Mendeleev Commun. 2020:30(1):22–24. doi:10.1016/j.mencom.2020.01.007
Gorbunova MN, Vorob’eva AI. Polysulfones on the base of newdiallylaminophosphonium salts. Macromol Symp. 2010;298(1): 160–166. doi:10.1002/masy.201000044
Kabachnik MI, Medved TYa, Dyatlova NM, Arkhipova OG, Rudomino MV. Organophosphorus complexones. Uspekhi khimii. 1968;37(7):1161–1191 (in Russian).
Arkhipova OG, Kochetkova TA, Rudomino MV, Medved TYa, Kabachnik MI. Effect of aminoalkylphosphinic acids on experimental beryllium poisoning. Dokl Chem. 1964;158(5):1235–1237 (in Russian).
Gorbunova M, Lemkina L, Nechaev A. Guanidinium and phosphonium scafolds loaded with silver nanoparticles: synthesis, characterization, in vitro assessment of the antibacterial potential and toxicity. J Inorg Organomet Polym Mat. 2021;31:2218–2232. doi:10.1007/s10904-021-01941-2
Vorob’eva AI, Gorbunova MN, Sataeva FA, Muslukhov RR, Kolesov SV, Tolstikov AG, Monakov YuB. Diallylamidophosphonium salts in radical polymerization reactions. Russ J Appl Chem. 2008;81(5):840–844. doi:10.1134/S1070427208050224
Sivtsov ЕV, Lavrov NА, Nikolaev АF. The influence of the medium on the radical (co)polymerization of N-vinyl monomers. Plasticheskie massy. 2001;10:32 –42
He R, Qian X, Yin J, Zhu Z. Formation of silver dendrites under microwave irradiation. Chem Phys Lett. 2003;369(3–4):454–458. doi:10.1016/S0009-2614(02)02036-5
Anthierens T, Billiet L, Devlieghere F, Du Prez F. Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innov Food Sci Emerg. 2012;15;81–85. doi:10.1016/j.ifset.2012.02.010
Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Polym Chem. 1993;31(6);1467–1472. doi:10.1002/pola.1993.080310615
Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. J Polym Chem. 1994;32(10);1997–2001. doi:10.1002/pola.1994.080321024
Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Chem. 1993;31(6);1441–1447. doi:10.1002/pola.1993.080310611
Rahman M, Ahmad MZ, Kazmi I, Akhter S, Afzal M, Gupta G, Ahmed FJ, Anwar F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv. 2012;9(4):367–381. doi:10.1517/17425247.2012.668522
DOI: https://doi.org/10.15826/chimtech.2022.9.2.S13
Copyright (c) 2022 Marina Gorbunova, Larisa Lemkina, Yulia Beloglazova
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International