New triple molybdate and tungstate Na5Rb7Sc2(XO4)9 (X = Mo, W)
Abstract
New compounds of the composition Na5Rb7Sc2(XO4)9 (X = Mo, W) were obtained via the ceramic technology. The sequences of chemical transformations occurring during the formation of these compounds were established, and their primary characterization was performed. Both Na5Rb7Sc2(XO4)9 (X = Mo, W) were found to melt incongruently at 857 K (X = Mo) and 889 K (X = W). They are isostructural to Ag5Rb7Sc2(XO4)9 (X = Mo, W), Na5Cs7Ln2(MoO4)9 (Ln = Tm, Yb, Lu) and crystallize in the trigonal crystal system (sp. gr. R32). The crystal structures were refined with the Rietveld method using the powder X-ray diffraction data. The thermal expansion of Na5Rb7Sc2(WO4)9 was studied by high-temperature powder X-ray diffraction; it was shown that this triple tungstate belongs to high thermal expansion materials.
Keywords
Full Text:
PDFReferences
Morozov VA, Lazoryak BI, Smirnov VA, Mikhailin VV, Basovich OM, Khaikina EG. Crystal structures and luminescence properties of triple molybdates LiMNd2(MoO4)4 (M = K, Rb, Tl). Russ J Inorg Chem. 2001;46(6):873–879.
Song M, Zhang L, Wang G. Growth and spectral properties of Nd3+-doped Li3Ba2Ln3(MoO4)8 (Ln = La, Gd) crystals. J Alloys Compds. 2009;480:839–842. doi:10.1016/j.jallcom.2009.02.082
Xie A, Yuan XM, Wang FX. A potential red-emitting phosphors scheelite-like triple molybdates LiKGd2(MoO4)4: Eu3+ for white light emitting diode applications. Sci China Tech Sci. 2011;54:70−75. doi:10.1007/s11431-010-4222-y
Li H, Zhang L, Wang G. Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8. J Alloys Compd. 2009;478(1):484–488. doi:10.1016/j.jallcom.2008.11.079
Xiao B, Lin Zh, Zhang L, Huang Y, Wang G. Growth, thermal and spectral properties of Er3+-doped and Er3+/Yb3+-codoped Li3Ba2La3(WO4)8 crystals. PLoS ONE. 2012;7(7):40631. doi:10.1371/journal.pone.0040631
Pan Yu, Chen Y, Lin Y, Gong X, Huang J, Luo Z, Huang YD. Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal. Cryst Eng Comm. 2012;14:3930–3935. doi:10.1039/C2CE25190F
Li H, Lin Zh, Zhang L, Huang Y, Wang G. Spectroscopic characteristics of Yb3+-doped Li3Ba2Y3(WO4)8 crystal. J Lumin. 2012;132:1507–1510. doi:10.1016/j.jlumin.2012.01.050
Hu J, Gong X, Huang J, Chen Yu, Lin Y, Luo Z, Huang YD. Near ultraviolet excited Eu3+ doped Li3Ba2La3(WO4)8 red phosphors for white light emitting diodes. Opt Mater Express. 2016;6:181. doi:10.1364/OME.6.000181
Zeng X-L, Zhang J-Y, Chen D-G, Huang F. Crystal Structure and Spectroscopic Properties of a New Ternary Tungstate Li3Ba2Ho3(WO4)8. Chin J Struct Chem. 2013;1:33–38.
Guo W, Jiao Y, Wang P, Liu Q, Liu Sh, Hou F. Energy transfer and spectroscopic characterization of new green emitting Li3Ba2Gd3(WO4)8:Tb3+ phosphor. Solid State Phenom. 2018;281:686–691. doi:10.4028/www.scientific.net/SSP.281.686
Han X, Calderon R, Esteban-Betegón F, Cascales C, Zaldo C, Jezowski A, Stachowiak P. Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. A spectrally broadened disordered crystal for ultrafast mode-locked lasers. Cryst Growth Des. 2012;12(8):3878–3887. doi:10.1021/cg300105g
Verma A, Sharma SK. Downshifting and up-conversion luminescent properties of triple molybdate NaCaLa(MoO4)3:Tb3+/Yb3+ phosphor for solar cell application. AIP Conf Proc. 2019;2115(1):030562. doi:10.1063/1.5113401
Savina AA, Solodovnikov SF, Belov DA, Basovich OM, Solodovnikova ZA, Pokholok KV, Stefanovich SYu, Lazoryak BI, Khaikina EG. Synthesis, crystal structure and properties of alluaudite-like triple molybdate Na25Cs8Fe5(MoO4)24. J Solid State Chem. 2014;220:217–220. doi:10.1002/chin.201446018
Savina AA, Solodovnikov SF, Belov DA, Solodovnikova ZA, Stefanovich SYu, Lazoryak BI, Khaikina EG. New alluaudite-related triple molybdates Na25Cs8R5(MoO4)24 (R = Sc, In): synthesis, crystal structures and properties. New J Chem. 2017;41:5450–5457. doi:10.1039/C7NJ00202E
Yudin VN, Zolotova ES, Solodovnikov SF, Solodovnikova ZA, Korolkov IV, Stefanovich SY, Kuchumov BM. Synthesis, structure, and conductivity of alluaudite-related phases in the Na2MoO4–Cs2MoO4–CoMoO4 system. Eur J Inorg Chem. 2019;2:277–286. doi:10.1002/ejic.201801307
Kozhevnikova NM, Kotova IYu. X-ray study of phases of variable-composition M1–xA1–xR1+x(MoO4)3, 0 x 0.3–0.5 (M = Na, K; A = Mg, Mn, Co, Ni; R = Al, In, Cr, Fe, Sc). Zh Neorg Khim. 2000;45:102–103.
Kotova IY, Belov DA, Stefanovich SY. Ag1–xMg1–xR1+x(MoO4)3 Ag+-conducting nasicon-like phases, where R = Al or Sc and 0 ≤ x ≤ 0.5. Russ J Inorg Chem. 2011;56:1189–1193. doi:10.1134/S0036023611080122
Grossman VG, Bazarova JG, Molokeev MS, Bazarov BG. New triple molybdate K5ScHf(MoO4)6: synthesis, properties, structure and phase equilibria in the M2MoO4–Sc2(MoO4)3–Hf(MoO4)2 (M = Li, K) systems. J Solid State Chem. 2020;283:121143. doi:10.1016/j.jssc.2019.121143
Spiridonova TS, Solodovnikov SF, Savina AA, Kadyrova YuM, Solodovnikova ZA, Yudin VN, Stefanovich SYu, Khaikina EG. New triple molybdate Rb2AgIn(MoO4)3: synthesis, framework crystal structure and ion transport behavior. Acta Crysallogr С. 2018;74(12):1603–1609. doi:10.1107/S2053229618014717
Spiridonova TS, Solodovnikov SF, Savina AA, Kadyrova YuM, Solodovnikova ZA, Yudin VN, Stefanovich SYu, Kotova IYu, Khaikina EG, Komarov VYu.
Rb9–xAg3+xSc2(WO4)9: a new glaserite-related structure type, rubidium disorder, ionic conductivity. Acta Crystallogr. B. 2020; 76:28–37. doi:10.1107/S2052520619015270
Spiridonova TS, Solodovnikov SF, Molokeev MS, Solodovnikova ZA, Savina AA, Kadyrova YuM, Sukhikh AS, Kovtunets EV, Khaikina EG. Synthesis, crystal structures, and properties of new acentric glaserite-related compounds Rb7Ag5‒3х Sc 2+х (XO4)9 (X = Mo, W). J Solid State Chem. 2022;305:122638. doi:10.1016/j.jssc.2021.122638
Basovich OM, Uskova AA, Solodovnikov SF, Solodovnikova ZA, Khaikina EG. Phase formation in the systems Na2MoO4–Cs2MoO4–Ln2(MoO4)3 and the crystal structure of the new ternary molybdate Cs7Na5Yb2(MoO4)9. Vestn Buryats Gos Univ Khim Fiz. 2011;3:24–29. Russian.
ICDD PDF-2 Database, Cards № 01-074-2369, 00-012-0773, 00-024-0958, 01-073-2342, 01-072-2078, 01-089-4691
Smith GS, Snyder RL. FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Crystallogr. 1979;12:60–65.
Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71. doi:10.1107/S0021889869006558
Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, Karlsruhe, Germany. 2008.
Järvinen M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J Appl Crystallogr. 1993;26(4):525–531. doi:10.1107/S0021889893001219
WebCSD. Available from: https://www.ccdc.cam.ac.uk/structures/
Okada K, Ossaka J. Structures of potassium sodium sulphate and tripotassium sodium disulphate, Acta Crystallogr. 1980;36:919–921. doi:10.1107/S0567740880004852
DOI: https://doi.org/10.15826/chimtech.2021.8.4.12
Copyright (c) 2021 Tatyana S. Spiridonova, Aleksandra A. Savina, Evgeniy V. Kovtunets, Elena G. Khaikina
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International