Metal-Organic Frameworks for Metal-Ion Batteries: Towards Scalability
Abstract
Keywords
Full Text:
PDFReferences
Nguyen TP, Easley AD, Kang N, Khan S, Lim SM, Rezenom YH, Wooley KL. Polypeptide organic radical batteries. Nature. 2021;593(7857):61-6. doi:10.1038/s41586-021-03399-1
Xu G, Nie P, Dou H, Ding B, Li L, Zhang X. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today. 2017;20(4):191-209. doi:10.1016/j.mattod.2016.10.003
Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276-79. doi:10.1038/46248
Mezenov YA, Krasilin AA, Dzyuba VP, Nominé A, Milichko VA. Metal–organic frameworks in modern physics: Highlights and perspectives. Advanced Science. 2019;6(17):1900506. doi:10.1002/advs.201900506
Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry. 2019;2(1):1-14. doi:10.1038/s42004-019-0184-6
Xie LS, Skorupskii G, Dincă M. Electrically conductive metal–organic frameworks. Chemical reviews. 2020;120(16):8536-80. doi:10.1021/acs.chemrev.9b00766
Dou JH, Sun L, Ge Y, Li W, Hendon CH, Li J, Dincă M. Signature of metallic behavior in the metal–organic frameworks M3 (hexaiminobenzene) 2 (M = Ni, Cu). Journal of the American Chemical Society. 2017;139(39):13608-11. doi:10.1021/jacs.7b07234
Clough AJ, Orchanian NM, Skelton JM, Neer AJ, Howard SA, Downes CA, Marinescu SC. Room Temperature Metallic Conductivity in a Metal–Organic Framework Induced by Oxidation. Journal of the American Chemical Society. 2019;141(41):16323-30. doi:10.1021/jacs.9b06898
He Y, Cubuk ED, Allendorf MD, Reed EJ. Metallic metal–organic frameworks predicted by the combination of machine learning methods and ab initio calculations. The journal of physical chemistry letters. 2018;9(16):4562-9. doi:10.1021/acs.jpclett.8b01707
Foster ME, Sohlberg K, Allendorf MD, Talin AA. Unraveling the semiconducting/metallic discrepancy in Ni3 (HITP) 2. The journal of physical chemistry letters. 2018;9(3):481-6. doi:10.1021/acs.jpclett.7b03140
Zhong M, Kong L, Zhao K, Zhang YH, Li N, Bu XH. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. Advanced Science. 2021;8(4):2001980. doi:10.1002/advs.202001980
Zheng ZJ, Ye H, Guo ZP. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy & Environmental Science. 2021;14(4):1835-53. doi:10.1039/D0EE03181J
Thakur AK, Majumder M, Patole SP, Zaghib K, Reddy MV. Metal–organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Materials Advances. 2021;2(8):2457-82. doi:10.1039/D0MA01019G
Wen X, Zhang Q, Guan J. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews. 2020;409:213214. doi:10.1016/j.ccr.2020.213214
Sun W, Tang X, Wang Y. Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries. Electrochemical Energy Reviews. 2020;3(1):127-54. doi:10.1007/s41918-019-00056-0
Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Lu X. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. Journal of Energy Storage. 2019;21:632-46. doi:10.1016/j.est.2018.12.025
Du J, Li F, Sun L. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews. 2021;4461(4):214118. doi:10.1039/D0CS01191F
Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Yang W. Metal–Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials. 2021;33(27):2008784. doi:10.1002/adma.202008784
Zhu W, Li A, Wang Z, Yang J, Xu Y. Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small. 2021;17(22):2006424. doi:10.1002/smll.202006424
Jiang Y, Zhao H, Yue L, Liang J, Li T, Liu Q, Sun X. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications. 2020;22:106881. doi:10.1016/j.elecom.2020.106881
Zhao R, Liang Z, Zou R, Xu Q. Metal-organic frameworks for batteries. Joule. 2018;2(11):2235–59. doi:10.1016/j.joule.2018.09.019
Reddy RCK, Lin J, Chen Y, Zeng C, Lin X, Cai Y, Su CY. Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coordination Chemistry Reviews. 2020;420:213434. doi:10.1016/j.ccr.2020.213434
Wu Q, Zhou X, Xu J, Cao F, Li C. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry. 2019;38:94-113. doi:10.1016/j.jechem.2019.01.005
Wang ZY, Tao HZ, Yue Y. Metal-organic-framework-based cathodes for enhancing the electrochemical performances of batteries: a review. ChemElectroChem. 2019;6(21):5358-74. doi:10.1002/celc.201900843
Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Deep A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews. 2019;393:48-78. doi:10.1016/j.ccr.2019.05.006
Zhang L, Liu H, Shi W, Cheng P. Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coordination Chemistry Reviews. 2019;388:293-309. doi:10.1016/j.ccr.2019.02.030
Barbosa J, Gonçalves RF, Costa CM, de Zea Bermudez V, Fidalgo A, Zhang Q, Lanceros-Mendez S. Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances. 2021;2(12):3790-805. doi:10.1039/D1MA00244A
Huang WH, Li XM, Yang XF, Zhang XX, Wang HH, Wang H. The recent progress and perspectives on metal-and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers. 2021;5(9):3593-613. doi:10.1039/D0QM00936A
Chu Z, Gao X, Wang C, Wang T, Wang G. Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. Journal of Materials Chemistry A. 2021;9(12):7301-16. doi:10.1039/D0TA11624F
Chen T, Chen S, Chen Y, Zhao M, Losic D, Zhang S. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers. 2021;5(4):1771-94. doi:10.1039/d0qm00856g
Furukawa H, Müller U, Yaghi OM. “Heterogeneity within order” in metal–organic frameworks. Angewandte Chemie International Edition. 2015;54(11):3417-30. doi:10.1002/anie.201410252
Ren J, Dyosiba X, Musyoka NM, Langmi HW,Mathe M. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews. 2017;352:187-219. doi:10.1016/j.ccr.2017.09.005
Silva P, Vilela SMF, Tome JPC, Almeida Paz FA. Multifunctional metal-organic frameworks: from academia to industrial applications. Chemistry Society Reviews. 2015;44:6774–803. doi:10.1039/c5cs00307e
Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chemical Society Reviews. 2017;46(11):3453-80. doi:10.1039/c7cs00109f
Johnson EM, Ilic S, Morris AJ. Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Science.2021;7(3):445-53. doi:10.1021/acscentsci.1c00047
Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. 2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie International Edition. 2021;60(11):5612-24. doi:10.1002/anie.202006102
Day RW, Bediako DK, Rezaee M, Parent LR, Skorupskii G, Arguilla MQ, Dincă M. Single crystals of electrically conductive two-dimensional metal–organic frameworks: Structural and electrical transport properties. ACS central science. 2019;5(12):1959-64. doi:10.1021/acscentsci.9b01006
Nam KW, Park SS, dos Reis R. et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Community. 2019;10:4948. doi:10.1038/s41467-019-12857-4
Gu S, Bai Z, Majumder S, Huang B, Chen G. Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. Journal of Power Sources. 2019;429:22-9. doi:10.1016/j.jpowsour.2019.04.087
Li Z, Huang X, Sun C, Chen X, Hu J, Stein A, Tang B. Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. Journal of Materials Science. 2017;52:3979–91. doi:10.1007/s10853-016-0660-7
Luo Y, Wu M, Pang B, Ge J, Li R, Zhang P, Okada S. Metal-organic Framework of [Cu2 (BIPA-TC)(DMA) 2] n: A Promising Anode Material for Lithium-Ion Battery. ChemistrySelect. 2020;5(14):4160-4. doi:10.1002/slct.202000503
Weng YG, Yin WY, Jiang M, Hou JL, Shao J, Zhu QY, & Dai J. Tetrathiafulvalene-Based Metal–Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2020;12(47):52615-23. doi:10.1021/acsami.0c14510
Han Y, Qi P, Zhou J, Feng X, Li S, Fu X, Wang B. Metal–organic frameworks (Mofs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS applied materials & interfaces. 2015;7(48):26608-13. doi:10.1021/acsami.5b08109
Gao C, Wang P, Wang Z, Kær SK, Zhang Y, Yue Y. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy. 2019;65:104032. doi:10.1016/j.nanoen.2019.104032
Zhao G, Tang L, Zhang L, Chen X, Mao Y, Sun K. Well-developed capacitive-capacity of metal-organic framework derived Co3O4 films in Li ion battery anodes. Journal of Alloys and Compounds. 2018;746:277-84. doi:10.1016/j.jallcom.2018.02.285
Mutahir S, Wang C, Song J, Wang L, Lei W, Jiao X, Hao Q. Pristine Co (BDC) TED0. 5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Applied Materials Today. 2020;21:100813. doi:10.1016/j.apmt.2020.100813
Wang J, Dong S, Zhang Y, Chen Z, Jiang S, Wu L, Zhang X. Metal–organic framework derived titanium-based anode materials for lithium ion batteries. Nano-Structures & Nano-Objects. 2018;15:48-53. doi:10.1016/j.nanoso.2018.03.004
Li H, Lang J, Lei S, Chen J, Wang K, Liu L, Yan X. A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials. Advanced Functional Materials. 2018;28(30):1800757. doi:10.1002/adfm.201800757
Nagarathinam M, Saravanan K, Phua EJH, Reddy MV, Chowdari BVR, Vittal JJ. Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries. Angewandte Chemie International Edition. 2012;51(24):5866-70. doi:10.1002/anie.201200210
Zou F, Liu K, Cheng CF, Ji Y, Zhu, Y. Metal-organic frameworks (MOFs) derived carbon-coated NiS nanoparticles anchored on graphene layers for high-performance Li-S cathode material. Nanotechnology. 2020;31(48):485404. doi:10.1088/1361-6528/abae9b
Xue R, Liu N, Bao L, Chen L, Su Y, Lu Y, Wu F. UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material. Journal of Energy Chemistry. 2020;50:378-86. doi:10.1016/j.jechem.2020.03.049
Shimizu T, Wang H, Matsumura D, Mitsuhara K, Ohta T, Yoshikawa H. Porous Metal–Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium-Ion Batteries. ChemSusChem. 2020;13(9):2256-22. doi:10.1002/cssc.201903471
Sadakiyo M, Kitagawa H. Ion-conductive metal–organic frameworks. Dalton Transactions. 2021;50(16):5385-97. doi:10.1039/D0DT04384B
Wiers BM, Foo ML, Balsara NP, Long JR. A solid lithium electrolyte via addition of lithium isopropoxide to a metal–organic framework with open metal sites. Journal of the American Chemical Society. 2011;133(37):14522-5. doi:10.1021/ja205827z
Fujie K, Ikeda R, Otsubo K, Yamada T, Kitagawa H. Lithium ion diffusion in a metal–organic framework mediated by an ionic liquid. Chemistry of Materials. 2015;27(21):7355-61. doi:10.1021/acs.chemmater.5b02986
Park SS, Tulchinsky Y, Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. Journal of the American Chemical Society. 2017;139(38):13260-3. doi:10.1021/jacs.7b06197
Wu JF, Guo X. Nanostructured Metal–Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small. 2019;15(5):1804413. doi:10.1002/smll.201804413
Luo J, Li Y, Zhang H, Wang A, Lo WS, Dong Q, Wang D. A metal–organic framework thin film for selective Mg2+ transport. Angewandte Chemie International Edition. 2019;58(43):15313-17. doi:10.1002/anie.201908706
Kinik FP, Uzun A, Keskin S. Ionic liquid/metal–organic framework composites: from synthesis to applications. ChemSusChem. 2017;10(14):2842-63. doi:10.1002/cssc.201700716
Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method. ACS applied materials & interfaces. 2016;8(31):20459-64. doi:10.1021/acsami.6b04701
Gutierrez M, Martín C, Souza BE, Van der Auweraer M, Hofkens J, Tan JC. Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today. 2020;21:100817. doi:10.1016/j.apmt.2020.100817
Chen X, Lu Y, Dong J, Ma L, Yi Z, Wang Y, Liu Y. Ultrafast In Situ Synthesis of Large-Area Conductive Metal–Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. ACS Applied Materials & Interfaces. 2020;12(51):57235-44. doi:10.1021/acsami.0c18422
Fan L, Guo Z, Zhang Y, Wu X, Zhao C, Sun X, Zhang N. Stable artificial solid electrolyte interphase films for lithium metal anode via metal–organic frameworks cemented by polyvinyl alcohol. Journal of Materials Chemistry A. 2020;8(1):251-8. doi:10.1039/c9ta10405d
Gutierrez M, Martín C, Souza BE, Van der Auweraer M, Hofkens J, Tan JC. Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today. 2020;21:100817. doi:10.1016/j.apmt.2020.100817
Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Ameloot R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature materials. 2016;15(3):304-10. doi:10.1038/nmat4509
Han S, Ciufo RA, Meyerson ML, Keitz BK, Mullins CB. Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemistry A. 2019;7(33):19396-406. doi:10.1039/c9ta05179a
Stassin T, Rodríguez-Hermida S, Schrode B, Cruz AJ, Carraro F, Kravchenko D, Ameloot R. Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications. 2019;55(68):10056-9. doi:10.1039/c9cc05161a
Cruz AJ, Stassen I, Krishtab M, Marcoen K, Stassin T, Rodríguez-Hermida S, Teyssandier J, Pletincx S, Verbeke R, Rubio-Giménez V. Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films. Chem Mater. 2019;31:9462. doi:10.1021/acs.chemmater.9b03435
Stassin T, Stassen I, Marreiros J, Cruz AJ, Verbeke R, Tu M, Reinsch H, Dickmann M, Egger W, Vankelecom IFJ. Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Large-Pore Metal–Organic Framework MAF-6. Chem Mater. 2020;32:1784. doi:10.1021/acs.chemmater.9b03807
Stassin T, Stassen I, Wauteraerts N, Cruz AJ, Kräuter M, Coclite AM, de Vos D, Ameloot R. Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Framework. Eur J Inorg Chem. 2020;2020:71. doi:10.1002/ejic.201901051
Krishtab M, Stassen I, Stassin T, Cruz AJ, Okudur OO, Armini S, Wilson C, de Gendt S, Ameloot R. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nature Communications. 2019;10:3729. doi:10.1038/s41467-019-11703-x
Stassin T, Waitschat S, Heidenreich N, Reinsch H, Pluschkell F, Kravchenko D, Marreiros J, Stassen I, van Dinter J, Verbeke R. Aqueous Flow Reactor and Vapour-Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties. Chemistry. 2020;26:10841. doi:10.1002/chem.202001661
Tu M, Kravchenko DE, Xia B, Rubio-Giménez V, Wauteraerts N, Verbeke R, Vankelecom IFJ, Stassin T, Egger W, Dickmann M. Template-mediated control over polymorphism in the vapor-assisted formation of zeolitic imidazolate framework powders and films. Angew Chem Int Ed. 2021;133:7631. doi:10.1002/anie.202014791
Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews. 2012;112(2):933-69. doi:10.1021/cr200304e
Mezenov YA, Kulachenkov NK, Yankin AN, Rzhevskiy SS, Alekseevskiy PV, Gilemkhanova VD, Milichko VA. Polymer Matrix Incorporated with ZIF-8 for Application in Nonlinear Optics. Nanomaterials. 2020;10(6):1036. doi:10.3390/nano10061036
Isaeva VI, Kustov LM. Microwave activation as an alternative production of metal-organic frameworks. Russian Chemical Bulletin. 2016;65(9):2103-14. doi:10.1007/s11172-016-1559-9
Thomas-Hillman I, Laybourn A, Dodds C, Kingman SW. Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. Journal of Materials Chemistry A. 2018;6(25):11564-81. doi:10.1039/c8ta02919a
Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev. 2015;285:11–23. doi:10.1016/j.ccr.2014.10.008
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today. 2021;46:109-24. doi:10.1016/j.mattod.2021.01.008
Al-Kutubi H, Gascon J, Sudhölter EJR, Rassaei L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem. 2015;2(4):462-74. doi:10.1002/celc.201402429
Liu J, Woll C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem Soc Rev. 2017;46:5730-70. doi:10.1039/C7CS00315C
DOI: https://doi.org/10.15826/chimtech.2021.8.3.04
Copyright (c) 2021 Semyon Bachinin, Venera Gilemkhanova, Maria Timofeeva, Yuliya Kenzhebayeva, Andrei Yankin, Valentin A. Milichko
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International